<- function(
simul n_individuals = 1000,
n_occasions = 3, # release, first sighting, second sighting
n.states = 3, # juvenile, adult, dead
phi = 0.7,
psi = 0.8,
p = 0.3) {
# state matrix
<- matrix(c(
phi_state
0, phi, 1 - phi,
0, psi, 1 - psi,
0, 0, 1
nrow = n.states, byrow = TRUE)
),
# observation matrix
<- matrix(c(
phi_obs
0, 0, 1,
0, p, 1 - p,
0, 0, 1
nrow = n.states, byrow = TRUE)
),
# empty capture history list of matrices
<- ch_true <- matrix(NA,
ch nrow = n_individuals,
ncol = n_occasions)
# always seen at release
1] <- ch_true[, 1] <- 1
ch[,
# fill CH
for (i in 1:n_individuals) {
for (o in 2:n_occasions) {
# state transition
<- rmultinom(n = 1,
state_p size = 1,
prob = phi_state[ch_true[i, o - 1], ])
<- which(state_p == 1)
ch_true[i, o] # observation transition
<- rmultinom(n = 1,
event_p size = 1,
prob = phi_obs[ch_true[i, o], ])
<- which(event_p == 1)
ch[i, o] # o
} # i
}
# return
return(list("ch" = ch, "ch.true" = ch_true))
}
A popular way to estimate life-history rates, such as survival, reproduction and movement rates, is using Cormack Jolly Seber (CJS) models cast in state-space equations. These models vary in complexity, but generally build on two fairly simple equations representing state and observation processes:
The first equation is known as the state process and allows for the estimation of the transition rate, here survival
I’ve used CJS models in a number of capacities (see ), and for each I’ve written my own model in OpenBUGS
, JAGS
, Stan
or nimble
, and used Bayesian inference. However, Bayesian inference relies on sampling the parameter space using Monte-Carlo Markov Chains (MCMC), which can be time-consuming (despite ever-efficient algorithms and computation).
Recently, I attended fantastic Template Model Builder
training given by Anders Nielsen. It is promoted as a fast and flexible language for inference, whether frequentist or Bayesian.
I thought that it might be nice to write a simple CJS model in TMB, following the excellent examples by Olivier Gimenez, and in native R
too.
Here is my try…
Data simulation
We first build a function to simulate data from a multi-event (juvenile and adult) capture-recapture (CJS) model:
Likelihood function in native R
First, we need a small function to protect the log from “exploding” (thanks, Olivier Gimenez):
<- function(v) {
logprot <- 2.2204e-016
eps <- log(eps) * (1 + vector(length = length(v)))
u <- (v > eps)
index <- log(v[index])
u[index] return(u)
}
Then the likelihood (take the time to compare this function to the data simulation function - they’re similar!):
<- function(b, ch) {
cjs
# R version of the TMB function below - not used here
<- function(A, B) {
multvecmat <- nrow(B)
nrowb <- ncol(B)
ncolb <- vector("numeric", length = ncolb)
C for (i in 1:ncolb) {
<- 0
C[i] for (k in 1:nrowb) {
<- C[i] + A[k] * B[k, i]
C[i]
}
}return(C)
}
# parameters
<- nrow(ch)
n_individuals <- ncol(ch)
n_occasions
# transforms
<- plogis(b[1])
phi <- plogis(b[2])
psi <- plogis(b[3])
p
# state matrix
<- matrix(c(
A 0, phi, 1 - phi,
0, psi, 1 - psi,
0, 0, 1
nrow = 3, byrow = TRUE)
),
# observation matrix
<- matrix(c(
B 0, 0, 1,
0, p, 1 - p,
0, 0, 1
nrow = 3, byrow = TRUE)
),
# log likelihood
<- 0
l for (i in 1:n_individuals) {
<- c(1, 0, 0)
foo for (j in 2:n_occasions) {
<- (foo %*% A) * B[, ch[i, j]]
foo
}<- l + logprot(sum(foo))
l
}
# negative loglikelihood
<- -l
l
# return
return(l)
}
Likelihood function in TMB
Now, let me try and write the same thing in TMB:
<- "
tmb_model
// capture-recapture model
#include <TMB.hpp>
/* implement the vector - matrix product */
template<class Type>
vector<Type> multvecmat(vector<Type> A, matrix<Type> B) {
int nrowb = B.rows();
int ncolb = B.cols();
vector<Type> C(ncolb);
for (int i = 0; i < ncolb; i++) {
C(i) = Type(0);
for (int k = 0; k < nrowb; k++) {
C(i) += A(k) * B(k, i);
}
}
return C;
}
template<class Type>
Type objective_function<Type>::operator() () {
// data
DATA_IMATRIX(ch);
int n_individuals = ch.rows();
int n_occasions = ch.cols();
// DATA_VECTOR(fii);
// parameters
PARAMETER_VECTOR(b);
// transformations
int npar = b.size();
vector<Type> par(npar);
for (int i = 0; i < npar; i++) {
par(i) = Type(1.0) / (Type(1.0) + exp(-b(i)));
}
Type phi = par(0);
Type psi = par(1);
Type p = par(2);
// observation matrix
matrix<Type> A(3, 3);
A(0, 0) = Type(0.0);
A(0, 1) = phi;
A(0, 2) = Type(1.0) - phi;
A(1, 0) = Type(0.0);
A(1, 1) = psi;
A(1, 2) = Type(1.0) - psi;
A(2, 0) = Type(0.0);
A(2, 1) = Type(0.0);
A(2, 2) = Type(1.0);
// observation matrix
matrix<Type> B(3, 3);
B(0, 0) = Type(0.0);
B(0, 1) = Type(0.0);
B(0, 2) = Type(1.0);
B(1, 0) = Type(0.0);
B(1, 1) = p;
B(1, 2) = Type(1.0) - p;
B(2, 0) = Type(0.0);
B(2, 1) = Type(0.0);
B(2, 2) = Type(1.0);
// likelihood
Type ll;
Type nll;
for (int i = 0; i < n_individuals; i++) {
vector<Type> foo(3);
foo(0) = Type(1.0);
foo(1) = Type(0.0);
foo(2) = Type(0.0);
for (int j = 1; j < n_occasions; j++) {
foo = multvecmat(foo, A) * vector<Type> (B.col(ch(i, j)));
}
ll += log(sum(foo));
}
// negative loglikelihood
nll = -ll;
// return
return nll;
}"
Then, we write the code to disk, compile and load it, which requires the R
package TMB
:
write(tmb_model, file = "cjs_tmb.cpp")
library(TMB)
if (!file.exists("cjs_tmb.dll")) compile("cjs_tmb.cpp")
dyn.load(dynlib("cjs_tmb"))
Estimation
With that done, let’s see how estimates from the two approaches compare and their speed:
# data simulation
<- simul(
raw_data n_individuals = 10000,
phi = 0.6,
psi = 0.9,
p = 0.2
)
# initial parameter values
<- runif(3, -1, 1)
b
# extract the data
<- raw_data$ch
ch
# R - using optim
<- Sys.time()
tic <- optim(par = b,
faa fn = cjs,
gr = NULL,
hessian = TRUE,
ch, method = "BFGS")
<- (Sys.time() - tic)
r_time <- round(plogis(faa$par), digits = 3)
r_ests names(r_ests) <- c("phi", "psi", "p")
print(r_ests)
phi psi p
0.625 0.880 0.195
# TMB - using optim
<- Sys.time()
tic <- MakeADFun(data = list(ch = ch - 1), # subtract 1 for indexing from 0
obj parameters = list(b = b),
DLL = "cjs_tmb",
silent = TRUE)
<- do.call("optim", obj)
opt <- (Sys.time() - tic)
tmb_time <- round(plogis(opt$par), digits = 3)
tmb_ests names(tmb_ests) <- c("phi", "psi", "p")
print(tmb_ests)
phi psi p
0.625 0.880 0.195
# clean up
dyn.unload(dynlib("cjs_tmb"))
Warning: 3 external pointers will be removed
unlink("cjs_tmp.*")
# print times
print(r_time)
Time difference of 9.823374 secs
print(tmb_time)
Time difference of 0.09974098 secs
Conclusion
It looks like it works and could be a useful tool for running sensitivity analyses…
Reuse
Citation
@online{d. gregory2023,
author = {D. Gregory, Stephen},
title = {CJS Is Fast in {TMB}},
date = {2023-03-10},
url = {https://stephendavidgregory.github.io/posts/cjs-tmb-is-fast},
langid = {en}
}