Patterns on a parr: Drivers of long-term salmon parr length in U.K. and French rivers depend on geographical scale

Stephen D. Gregory ${ }^{1,2}$ (D) Marie Nevoux ${ }^{2,3} \mid$ William D. Riley ${ }^{4} \mid$ William R. C. Beaumont ${ }^{1} \mid$ Nicholas Jeannot ${ }^{3,5} \mid$ Rasmus B. Lauridsen ${ }^{1}$ | Frederic Marchand ${ }^{3,5}$ | Luke J. Scott ${ }^{1}$ | Jean-Marc Roussel ${ }^{2,3}$

${ }^{1}$ Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, FBA River Laboratory, Wareham, Dorset, UK
${ }^{2}$ ESE, Ecology and Ecosystems Health, INRA, Agrocampus-Ouest, Rennes, France
${ }^{3}$ Pole Gest'Aqua, INRA, AFB, Rennes, France
${ }^{4}$ The Centre for Environment, Fisheries \& Aquaculture Science, Lowestoft, Suffolk, UK
${ }^{5}$ INRA, U3E Ecologie et Ecotoxicologie Aquatique, Rennes, France

Correspondence
Stephen D. Gregory, Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, FBA River Laboratory, Wareham, Dorset, UK
Emails: sgregory@gwct.org.uk,
stephendavidgregory@gmail.com

Funding information

European Union; U.K. Government's Department for Environment, Food and Rural Affairs (Defra), Grant/Award Number: SFO272

Abstract

1. Understanding the geographical scales at which environmental variables affect an individual's body size, and thus their mortality risk, can inform management strategies to help conserve wild populations under climate change. Yet, our current understanding of these relationships is based on studies done at different scales that report inconsistent findings. We predicted that temperature-related variables (e.g. winter temperature) influence body size at a "regional" scale, that is, affecting individuals in geographically independent catchments similarly, whereas non-temperature-related variables (e.g. conspecific competitor density) exert a "local" influence, that is, affecting individuals in geographically independent catchments differently.

2. We developed statistical models to test our predictions using body length measures of a large and long-term sample of juvenile Atlantic salmon (Salmo salar) from three rivers in the U.K. and France. We developed mixture models to predict the individual juvenile salmon ages objectively from their body length. We then developed linear mixed models to describe inter-annual changes in mean length of the youngest (age 0) cohort of juvenile salmon from river-specific seasonal variables, and tested whether they exerted their influence at a "local" or "regional" scale. All models accounted for spatio-temporal differences in sampling protocols and individual reproductive strategy. We estimated and interpreted coefficients using Bayesian theory.
3. Our findings supported our predictions. Juvenile salmon were longer in years of higher overwinter water temperature and this effect was best parameterised as a single "regional" coefficient applicable to all three rivers. Similarly, spring mean temperature was best parameterised with a single "regional" nonlinear coefficient. In contrast, juvenile salmon were shorter in years of high densities of competing conspecifics and their interaction with total mean discharge and these effects were represented by "local" river-specific coefficients. Summer droughts had a negative effect on juvenile salmon length but was best parameterised as a single "regional" coefficient, contrary to our expectations.
4. We show that environmental variables affect biological processes at different but predictable geographical scales. Temperature-related variables affect body
sizes of exothermic animals at a regional scale, whereas non-temperature variables, such as the density of conspecific competitors and water abstraction, exert their influence at a local scale. These findings highlight the importance of integrating local and regional management plans to mitigate the impacts of climate change on the body size, and ultimately the conservation, of exothermic species.

KEYWORDS

Atlantic salmon, body size, climate change, density dependence, geographical scale

1 | INTRODUCTION

Survival is positively related to body size in a wide range of plants and animals, from phytoplankton to mammals (McCoy \& Gillooly, 2008). The mechanism(s) underpinning this relationship could be intrinsic because larger individuals have lower metabolic rates and lower rates of cell damage (Brown, Gillooly, Allen, Savage, \& West, 2004) and/or extrinsic because larger individuals have a competitive advantage or lower per capita predation risk (Sogard, 1997). Nevertheless, evidence of this relationship is widespread and some researchers postulate that the "bigger is better" paradigm (sensu Sogard, 1997) should be an ecological "rule" (McCoy \& Gillooly, 2008). Size-dependent survival is important for population conservation because there is mounting evidence that individual body size is shrinking in response to climate change. Sheridan and Bickford (2011) found that 38 of $85(45 \%)$ studies of taxa from plants to mammals relating body size with climatic variables reported a decrease in size, compared to just 9 of 85 (11\%) reporting an increase (45% reported equivocal results). These changes are (in part) ascribed to the direct or indirect effects of changing mean temperature and precipitation and their variability, including their extremes (Sheridan \& Bickford, 2011). Together, these findings suggest that climate change negatively impacts wildlife populations through reduced survival of shrinking individuals.

As ectotherms, freshwater fish are strongly influenced by environmental conditions that act on their metabolic rates, affecting their growth and size (Atkinson, 1994). Experimental studies have shown that temperature and energy consumption are among the most important factors affecting somatic growth of fish (Brett, 1979). Evidence from empirical field studies is less common and suggests that climate change will drive decreasing body size-at-age in wild freshwater fish (e.g. in cyprinids; Daufresne, Lengfellner, \& Sommer, 2009), and that smaller fish will suffer higher mortality (Sogard, 1997). Consequently, there is a mounting urgency to understand how environmental variables affect freshwater fish growth in natural systems (Jonsson \& Jonsson, 2009). For example, Bacon, Gurney, Jones, Mclaren, and Youngson (2005) found positive correlations between spring temperatures and individual juvenile Atlantic salmon (Salmo salar, Family Salmonidae; hereafter, salmon) growth and basal metabolic and assimilation rates in a tributary of the river Dee, Scotland. Davidson, Letcher, and Nislow (2010) describe how juvenile salmon growth varied with seasonally changing river discharge in a
tributary of the Connecticut River, U.S.A., decreasing when discharge was low. Another variable - conspecific density (or density of salmon of the same cohort)-has also been shown to negatively affect fish growth, as individuals compete for limited local resources. For example, Bal, Rivot, Prevost, Piou, and Baglinière (2011) found that salmon and brown trout brown trout (Salmo trutta, Family Salmonidae) juvenile density had a strong effect on juvenile salmon growth on the river Oir, France.

Many empirical field studies investigating how environmental variables affect wild freshwater fish growth have considered only a single waterbody at a single scale, that is, a river or lake. Findings from single waterbodies are, however, often inconsistent because local conditions differ between waterbodies (e.g. habitat availability; Lobón-Cerviá, 2005) or environmental variables and their analysis differ between studies (e.g. including interactions [Crozier, Zabel, Hockersmith, \& Achord, 2010] or nonlinear effects [Parra, Almodovar, Ayllon, Nicola, \& Elvira, 2012]). Alternatively, environmental variables could influence biological processes at different geographical scales, rendering findings from single waterbody studies locationspecific (Folt, Nislow, \& Power, 1998). Fausch, Nakano, and Ishigaki (1994) found that the relationship between overlap in distributions of congeneric Char (Salvelinus sp., family Salmonidae) on Hokkaido Island, Japan, and temperature varied depending on the scale at which the observations were collected.

Poff and Huryn (1998) postulated that some variables, such as water temperature, affect wild salmon at regional scales (e.g. conti-nent-wide), whereas others, such as species' interactions, affect them at local scales (e.g. habitat patches). Mechanistically, a "regional" effect of temperature on juvenile salmon growth could reflect its ubiquitous and strong effect on individual metabolic rate, which transcends geographical boundaries (Folt et al., 1998). Conversely, a "local" effect of a non-temperature variable, for example, species' interactions or river discharge, on growth could reflect river-specific processes, such as localised habitat availability, rainfall events or differences in water abstraction regimes (Folt et al., 1998). Evidence supporting (and opposing) Poff and Huryn's hypotheses from studies across multiple waterbodies is presented in Table 1 and generally supports the hypothesis of a regional temperature effect and a local conspecific density effect. The evidence supporting a local effect of river discharge is, however, more equivocal. For example, Gudmundsson, Tallaksen, and Stahl (2011) found spatio-temporal correlations in a wide range of discharge measures over a network

TABLE 1 Environmental explanatory variables used to describe inter-annual changes in mean juvenile salmon length on the rivers Frome, Oir and Scorff, their description, their hypothesised influence and citations of studies that suggest their influence will be apparent at a local (river-specific) or a regional (similar across all rivers) geographical scale

Name	Description	Influence	Suggested scale of effect	
			Local	Regional
Temperature				
Winter degree days (WDD)	Degree days from 1 January to 31 March	Positive influence due to better egg growth conditions or early hatching	1	2
Winter degree days ${ }^{2}$ (WDD2)	Squared WDD to allow nonlinear relationship	Negative influence at high values due to low oxygen during development	-	2
Spring mean temperature (SPT)	Mean temperature from 1 April to 30 June	Positive influence due to better growth environment, particularly primary productivity	-	3
Spring mean temperature ${ }^{2}$ (SPT2)	Squared SPT to allow nonlinear relationship	Negative influence at high values due to thermal stress	-	4
Summer maximum temperature (SMT)	Maximum mean temperature during seven consecutive days from 1 July to 31 September	Positive influence due to high productivity	-	5
Summer maximum temperature ${ }^{2}$ (SMT2)	Squared SMT to allow nonlinear relationship	Negative influence at high value due to thermal stress	6	5
Discharge				
Total mean discharge (TMF)	Mean discharge from 1 April to 31 September	Positive influence due to increased food availability and available habitat to reduce density dependent effects	7	8
Summer minimum discharge (SMF)	Minimum discharge during seven consecutive days from 1 July to 31 September	Negative influence due to thermal stress and less available food	9	9
Other				
Conspecific density (DEN)	Conspecific density at site and time of capture	Negative influence due to less per capita available food	6	10
Conspecific density \times spring mean temperature (DENSPT)	Interaction between conspecific density and spring mean temperature	Negative influence of less per capita available food will be offset by the positive influence of increased primary productivity	-	10
Conspecific density \times total mean discharge (DENTMF)	Interaction between conspecific density and total mean discharge	Negative influence of less per capita available food will be offset by the positive influence of increased food availability	11	-
Winter NAO index (NAO)	Mean North Atlantic Oscillation index from 1 December to 31 March	Proxy for WDD	-	2

References: (1) Crozier et al., (2008); (2) Elliott \& Elliott, (2010); (3) Jensen, Forseth, \& Johnsen, (2000); (4) Swansburg et al., (2002); (5) Parra et al., (2012); (6) Lobon-Cervia, (2005); (7) Crozier \& Zabel, (2006); (8) Gudmundsson et al., (2011); (9) Nislow \& Armstrong, (2012); (10) Crozier et al., (2010); (11) Teichert, Kvingedal, Forseth, Ugedal, \& Finstad, (2010).
of semi-natural European rivers although measures of low discharge were less correlated over space. Milner, Cowx, and Whelan (2012) suggest that the effects of river discharge on salmonids may be localised because of differences in river geomorphology and water abstraction regimes.

In this study, we aim to (1) identify environmental variables influencing inter-annual changes in juvenile wild salmon lengths recorded on three geographically independent rivers, and (2) test which of those were influencing their lengths at a regional scale. We define a regional scale as the geographical area encompassing the three independent catchments of the rivers Frome, Oir and Scorff; many studies in Table 1 investigate patterns across non-independent rivers, that is, rivers in the same catchment. In contrast, we define a local scale as the geographical area encompassing the single catchment of
each river. As recommended by Folt et al. (1998), we estimated the effect of environmental variables on inter-annual changes in average juvenile salmon lengths with a multi-scale analysis, that is, allowing the data to estimate whether and at what scale environmental variables effect salmon lengths. Despite the difficulties associated with such an analysis (Folt et al., 1998), we feel that the spatial and temporal extents of our data (three independent catchments, followed for up to 25 years), the large number of individuals measured (approximately 100,000) afford us the empirical and statistical power to address these aims without bias. We predict that (1) temperaturerelated variables will act at the regional scale because temperature effects growth at the level of individual physiology, and (2) non-temperature variables, for example, discharge and conspecific density, will act at the local scale because their effects are modified by local-
scale processes and activities, such as precipitation, water abstraction regimes and spawning stock size. Finally, we investigate whether the winter North Atlantic Oscillation index can be used in place of locally measured temperature variables (Hallett et al., 2004) to further test the hypothesis that temperature-related variables operate a large geographical scales.

2 | METHODS

2.1 | Study species and locations

Atlantic salmon spawn in coastal rivers and a few inland systems in the West Atlantic North America from Ungava Bay to Connecticut River and in the East Atlantic from Petchora in Russia to Lima in Portugal. Adults spawn eggs in freshwater river gravel beds, which hatch and grow to become juvenile salmon parr that undergo physiological changes and migrate to sea as smolts. At sea, they grow and (usually) attain sexual maturity and become adults, which eventually return to their natal rivers to spawn. Depending on latitude, this lifecycle can take between 3 and 10 years. Although the reasons are still unclear (but see, e.g. Beaugrand \& Reid, 2012), Atlantic salmon populations are in decline throughout their geographical range, raising concerns for their persistence, particularly in southern and central Europe.

Parr data were collected on three rivers separated by the English Channel: the Frome (Dorset, U.K.), Oir (Normandy, France) and Scorff (Brittany, France) (Figure 1). These rivers were chosen for two reasons: (1) they have significant regional salmon populations whose parr have been monitored using consistent methods for $10-25$ years, and (2) they drain geographically independent catchments (Table S1). All three rivers are "index rivers" that report salmon stock estimates to the International Council for the Exploration of the Seas.

2.2 Data collection and preparation

Parr were captured by electrofishing from September to October on each river in each year, when they are large enough to be electrofished and marked. Electrofishing surveys were part of long-term monitoring programmes on each river and followed consistent protocols with standardised effort. Each parr was measured from the tip of the snout to the tail fork (hereafter length to the nearest millimetre, $m m$), examined for evidence of sexual maturity (mature if it had a soft and distended underbelly from enlarged gonads [Frome] or produced milt when massaged gently [Oir and Scorff]) and aged from a scale or-more often-by visual assessment from length. River, Site, Year and Day of Year were also recorded for each parr. All procedures were carried out under appropriate national licences and regulations.

River water temperature and discharge were measured on each river at a sub-daily (usually 15 min) interval. Each dataset had missing data, complicating the calculation of consistent explanatory environmental variables. To overcome this, we imputed missing data using the impSeqRob function of R package rrcovNA using spatially and temporally consistent E-Obs gridded data (version 10.0; http://eca.knmi.nl/dailydata/index.php) as predictors. We chose impSeqRob over alternative methods because it performed better in a small simulation experiment (Supporting Information). We used the resulting complete daily river water temperature and discharge datasets to calculate environmental variables purported to influence inter-annual changes in parr lengths in the scientific literature (Table 1).

Parr used in these analyses were caught at sites sampled consistently over time as part of river-specific long-term monitoring programmes and for which a relative index of annual parr density could be calculated. Total annual parr captures at each site were used as a site-specific index of relative annual changes in

FIGURE 1 A map showing the locations of the three rivers included in this study: rivers Frome (Dorset, U.K.), Oir (Normandy, France) and Scorff (Brittany, France)
conspecific density. Although conspecific density was not a measure of true density in any particular year, inter-annual changes in conspecific density were assumed to correspond to interannual changes in true density. A more rigorous approach to using an index of parr density would be to estimate parr abundance using an explicit sampling (sub)model, as structured in N mixture models, for example, Kanno et al. (2015). Other salmonids, for example, brown trout and European grayling (Thymallus thymallus, Family Salmonidae), were not included in the calculation of conspecific density because (1) they were not consistently recorded in salmon surveys, and (2) they were expected to occupy different niches, as suggested in other studies (e.g. Davidson et al., 2010).

A total of 94,497 individual parr were available for analysis: 61,515 captured at 27 locations on the Frome from 2004 to 2013; 5,797 captured at 12 locations on the Oir from 1994 to 2013; and 27,185 captured at 40 locations on the Scorff from 1993 to 2013. All sites yielded at least 10 parr in each year. Mean parr lengths (with standard errors) are presented in Figure 2.

2.3 | Age models

We limited our analysis to age 0 parr (i.e. parr that hatched from eggs in spring of the same year) for three reasons: (1) age 0 parr constitute a large majority of total parr numbers in these rivers and numbers of older parr were expected to be too small for statistical inference; (2) the effect of environmental conditions on older age >0 parr growth was expected to be weaker than in their first year (Parra et al., 2012) and (3) age >0 parr might have experienced unusual growth in their first year that was a factor in their decision to remain in the river for a second or more years (Baglinière \& Maisse, 1985).

For the large majority of parr, age was estimated by visual assessment from length; scales were read only for parr whose age could not be estimated visually. However, aging parr from length for an analysis of temporal changes in parr length introduces circularity. To overcome this, we used mixture models to reclassify-objectively -parr i as age 0 or age >0 based on its length I. We estimated parr ages for the Oir and Scorff separately; we did not estimate ages for Frome parr because overlap in length densities was considered

FIGURE 2 Line plots showing the mean and standard error (error bars) of unstandardised juvenile salmon length and standardised environmental variables plotted separately for each river over time. Value on the y-axis is the value of the variable in the units used in model fitting. DEN $=$ conspecific density, SMT $=$ summer maximum temperature, SMF = summer minimum discharge $=$ SPT spring mean temperature, TMF total mean discharge, and WDD $=$ winter degree days

negligible and age assignment from length reliable (Figures S2 and S3). The age model was given by

$$
\begin{align*}
& I_{i} \sim \sum_{j=1}^{J} \pi_{j} \operatorname{Normal}\left(I_{i} \mid \mu_{j}, \sigma^{2}\right) \tag{1}\\
& \mu_{j=1}=\alpha+\beta_{1} \text { Maturity }+\beta_{2} \text { Day of Year }+\beta_{3} \text { Site }+\beta_{4} \text { Year } \\
& \mu_{j=2}=\mu_{j=1}+I \delta
\end{align*}
$$

where α is a constant representing the mean length of age 0 parr adjusted by a coefficient representing the effect of parr maturity $\left(\beta_{1}\right)$, a coefficient representing the effect of Day of Year (DoY) that parr i was captured $\left(\beta_{2}\right)$ and coefficients representing the effects of Site $\left(\beta_{3}\right)$ and Year $\left(\beta_{4}\right), \pi_{j}$ is the proportion of individuals in age class j and

$$
\begin{aligned}
& \pi_{j} \geq 0, \sum_{j=1}^{J} \pi_{j}=1 \\
& \delta \sim \operatorname{half}-\operatorname{Normal}(0, \tau)
\end{aligned}
$$

We recognised $J=2$ components: $j=1$ for age 0 parr and $j=2$ for age >0 parr. Note that we assumed a time-invariant π_{j} because we felt that the annual parr length distributions were similar between years within rivers (Figure S2). All parameters were constant across components except for δ that measured the difference ($\delta \geq 0 \mathrm{~mm}$) in length of age >0 parr compared to age 0 parr as a consequence of spending an additional year(s) in the river. We multiplied δ by an indicator variable I indicating whether or not the parr was estimated as age >0 where $I \in\{0,1\}$ so that $I_{=0} \delta=0$ and $I_{=1} \delta=\delta$.

All age models included all effects because we were striving for accurate age estimates rather than a parsimonious model. We included Maturity because mature parr tend to be larger than immature parr, especially when age 0; Day of Year because parr caught later in the year could be larger due to their longer growing period; and Site and Year to account for observed spatio-temporal variations in parr length distributions (Figures S2 and S3) and because we included these as random effects in subsequent models. We omitted interactions because mixture model convergence is often slow and less likely for complex models (Congdon, 2007).

We used Monte Carlo Markov Chain (MCMC) for inference because it produces more accurate mixture model parameter estimates than maximum likelihood. It is also, however, prone to label switching (Jasra, Holmes, \& Stephens, 2005). To overcome this, we created a vector of observed ages that was missing data everywhere except for the shortest parr at each site, which was fixed at age 0 , and the largest parr anywhere, which was fixed at age >0 (Chung, Loken, \& Schafer, 2004). This assumption was justified because age >0 parr were present in each river in each year.

Each parr was assigned age 0 with probability $p 0$ calculated as the marginal probability that the individual was assigned age 0 . Parr assigned age >0 were discarded from subsequent analyses.

2.4 | Length model

We developed a model accounting for differences in sampling protocols and biological factors to investigate the influence of
environmental variables on inter-annual age 0 parr lengths, and whether their effect was apparent at a local or a regional geographical scale. The model was of the form

$$
\begin{align*}
& I_{i, s, y} \sim \operatorname{Normal}\left(l_{i} \mid \mu_{s, y}, \sigma^{2}\right) \tag{2}\\
& \mu_{s, y}=\alpha+\theta X+v_{s}+v_{y}
\end{align*}
$$

where $\theta=\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ is a vector of K parameters relating explanatory variables $X=x_{1}, x_{2}, \ldots, x_{k}$ to the mean parr length at site s in year y, accounting for a Site within River random effect v_{s} with a zero mean and variance τ_{s} from a half-Normal distribution and a Year within River random effect v_{y} with a zero mean and variance τ_{y} from a half-Normal distribution. We considered two types of explanatory variables: (1) baseline variables describing the effect of river-specific parr sampling protocols and maturity on individual length, and (2) environmental variables summarising variables hypothesised to drive the observed changes in age 0 parr lengths (Table 1). Baseline variables included the effect of River, Maturity and DoY, and were in the model to explain variations in parr length due to differences in river-specific processes and sampling protocols. A Site within River random effect was included because samples were taken at the site level rather than the river level. A Year within River random effect was included to account for inter-annual variability in age 0 parr length unexplained by the explanatory variables.

We parameterised a saturated model including information from all three rivers and all environmental variables (Table 1). Environmental variables entered the model as a linear and/or a nonlinear main effect, which assumes an identical effect on all three rivers, and as a linear and/or nonlinear effect in interaction with river, which allows the strength of the effect to be different for each river (Table 1). The saturated model was simplified by dropping those effects judged to be "unimportant." The importance of each effect was judged by Bayesian variable selection (see Hooten \& Hobbs, 2015). Specifically, we multiplied the coefficient representing the effect of the k environmental variable β_{k} by a stochastic Bernoulli indicator variable I_{k} that evaluates to $I_{k} \in\{0,1\}$ so that $I_{k=1} \beta_{k} \sim \beta_{k}$ and $I_{k=0} \beta_{k}=0$ (Kuo \& Mallick, 1998). For interaction effects, a coefficient representing the effect of the k th environmental variable on the r th river $\beta_{k, r}$ was multiplied by a single stochastic Bernoulli indicator variable $I_{k}^{\text {int }}$ with inclusion probability $p_{k, r}$ representing the importance of the whole interaction term. The same approach was taken for the main effects except that the inclusion probability of the main effect p_{k} was conditional on the probability of inclusion of the interaction term according to $p_{k}=l_{k}^{\text {int }}+\left(1-l_{k}^{\text {int }}\right) 0.5$. This ensured that the main effect was retained if the corresponding interaction term was retained (Ntzoufras, 2002).

A nonlinear effect was represented as a second-order polynomial and its probability of inclusion was conditional on retention of the first-order polynomial, that is, the linear effect, in both the main and interaction effects. We tested all temperature-related variables as linear and nonlinear effects because several studies have shown a negative effect of high temperatures (e.g. Crozier et al., 2010; Table 1). Interactions among explanatory variables were investigated by calculating the product of the two variables and entering this new environmental variable into the model as an independent
explanatory variable. In this way, their inclusion was not conditional on the inclusion of their constituent variables. We considered interactions between conspecific density and both spring mean temperature and total mean discharge because both have been shown to ameliorate the negative influence of competition for limited resources at high conspecific density (e.g. Crozier et al., 2010; Table 1).

The Bayesian variable selection procedure retained coefficients that were estimated to be substantially more or less than zero, that is, did not intercept zero, overcoming problems associated with unrealistic p values when modelling many cases (Ellison, Gotelli, Inouye, \& Strong, 2014).

2.5 | Model fitting

To compare the effect of environmental variables on age 0 parr length between rivers, they were standardised within river by subtracting the mean and dividing by 2 standard deviations (Gelman, 2008). This allowed the statistical effect size to be compared between rivers although the biological effect size could be different, that is, the actual change in parr length due to a unit change in a standardised environmental variable could be different between rivers. We took this decision to allow for local adaptation in growth at the different location (Hutchings, 2011).

To account for any possible collinearity among explanatory variables, we took the Absolute value of correlation coefficients ($|r|$) approach (sensu Dormann et al., 2013) because it avoids spurious estimation of regression coefficients and thus misinterpretation. Pearson's correlations among the standardised environmental variables (excluding NAO) were all $r \leq|.61|$ (Dormann et al., 2013; Table S2). (Indeed, only 1 and 2 pairs of standardised environmental variables were correlated $r \leq|.61|$ and $r \leq|.48|$, respectively; the other 8 pairwise comparisons were all ($r \leq 1.44 \mid$). The correlations between winter NAO (NAO, average NOAA NAO index from December to March, www.cpc.ncep.noaa.gov; Hallett et al., 2004) and all other environmental variables, including conspecific density, were similar to those for (WDD; Table S3). The correlation between WDD and NAO was $r=.70$.

To ensure identifiability, we applied constraints to variables represented as factors. For age models, we constrained coefficients for levels representing the first site and the last survey year to zero. For the length model, we applied a zero-sum constraint to interaction coefficients so that coefficients for all levels of the interaction term summed to zero. Coefficient estimates for interaction terms were therefore the estimated main effect coefficient modified by the estimated river-specific interaction coefficient.

The model coefficients were estimated using jags (version 4.2.0) called from R (version 3.3.2) using packages base, stats, ggplot2, stringr, lubridate, rrcovNA, data.table, dclone and rjags. We placed weakly informative priors on regression coefficients, $\beta \sim$ Normal ($0,0.001$), and on the model error term, $\sigma^{2} \sim$ Gamma $^{-1}$ (0.001, 0.001). Random effect variances took weakly informative half-Normal priors, $\tau \sim$ half-Normal ($0,0.01$), to improve estimation
behaviour where the random effect variance was close to zero (Gelman, 2006). Stochastic Bernoulli indicator variables were given a vague prior, that is, Bernoulli (0.5), which assumes values 0 and 1 occur with probability .5 (e.g. Tenan, O'Hara, Hendriks, \& Tavecchia, 2014). All coefficient estimates are presented with their 95\% Bayesian credible interval (Crl).

Parameters were estimated from three parallel MCMC chains run for 10^{5} iterations together with an adaptive period of 20^{3} iterations and burnin period of 10^{4} iterations (20^{4} iterations for the age models) that were discarded and parameter values were saved from every 20th iteration for inferences.

To assess model adequacy, we simulated a replicate dataset in each MCMC iteration and calculated the discrepancy of the replicate dataset X from the expected values E given model θ as

$$
D(x \mid \theta)=\sum_{N} X_{n}-E_{n}
$$

and then calculated the probability p (also known as the Bayesian p value) that the discrepancy from the replicate dataset $X_{\text {rep }}$ exceeded the discrepancy calculated for the observed data $X_{\text {obs }}$ as

$$
p=\operatorname{Pr}\left[D\left(X_{\text {rep }} \mid \theta\right)>D\left(X_{\text {obs }} \mid \theta\right)\right]
$$

A p value of .5 indicates that the model is adequate, that is, the evidence for a lack of fit to the observed data is weak.

3 | RESULTS

3.1 | Age results

An estimated 86.9\% ($\pi_{0}=0.869$, Crl: 0.860-0.878) of parr captured in the Oir were age 0 and they were-on average- 52.0 mm (CrI: 51.053.0) shorter than age >0 parr. The estimated proportion of age 0 parr was similar in the Scorff ($\pi_{0}=0.878, \mathrm{Crl}$: 0.874-0.882) and they were an estimated 49.5 mm (CrI: 49.0-49.9) shorter than age >0 parr. Maturity had a positive effect on mean age 0 and age >0 parr lengths, as expected, but DoY had a negative (albeit, small) effect on mean age 0 and age >0 parr lengths on the Scorff (but not on the Oir; Table 2a).

Age models correctly classified 99.4% and 94.9% of scale-read age 0 and age >0 parr from the Oir, respectively (Table S4). (The misclassification rate was higher for Scorff scale-read parr but are not reported here because of small sample sizes [Figure S4]). Furthermore, we consider this misclassification rate to be biased high because scales were read only for parr that could not be aged reliably by visual assessment from length. Length frequency histograms coloured by model-assigned age reveal good separation for both rivers (Figure S5).

Gelman's diagnostic statistics suggest that the age model MCMC chains were stationary and mixed well (Table S5).

3.2 | Length results

On average, parr were longest on the Frome and shortest on the Oir (Table 2b). Sexually mature parr were longer on all three rivers, but

TABLE 2 (a) Coefficient estimates (and 95\% Bayesian credible intervals) for variables included in the age models (used to estimate individual juvenile salmon ages) and (b) the length model (used to describe inter-annual changes in mean juvenile salmon length and test whether effects are "regional" or "local," respectively)

(a)			
Variable		River ${ }^{\text {a }}$	
		Oir	Scorff
Overall mean		68.02 (66.38, 69.67)	84.69 (83.39, 85.99)
Maturity		5.48 (4.11, 6.89)	10.36 (9.68, 11.07)
DoY		0.02 (-0.05, 0.09)	-0.10 (-0.13, -0.07)
Delta		52.00 (50.96, 53.04)	49.47 (49.04, 49.92)
Proportion age 0		86.9 (86.0, 87.8)	87.8 (87.4, 88.2)
(b)			
Variable	River		
	Frome	Oir	Scorff
Overall mean	92.013 (89.632, 94.406)	79.234 (75.154, 83.371)	87.540 (84.347, 90.865)
Maturity	6.409 (6.050, 6.770)	5.932 (4.175, 7.690)	14.365 (13.654, 15.071)
DoY ${ }^{\text {b }}$		-0.032 (-0.043, -0.021)	
Site\|River variance	0.067 (0.038, 0.109)	0.031 (0.012, 0.064)	0.026 (0.016, 0.039)
Year\|River variance	0.136 (0.043, 0.327)	0.047 (0.022, 0.089)	0.032 (0.016, 0.056)

${ }^{a}$ Age models were not fitted for the Frome.
${ }^{\text {b }}$ Day of Year (DoY) was fitted as a single parameter in the length model because its effect on parr lengths was negligible.
the effect of maturity on Scorff parr length was over twice that estimated for the Frome or Oir (Table 2b). The effect of DoY was small and counter-intuitive: it suggested that parr were shorter each day after the start of the sampling season (Table 2b).

Only five of the eight environmental variables hypothesised to influence age 0 parr length changes were retained in the length model (Figure 3). Conspecific density (DEN) was important and had a negative influence on age 0 parr lengths on all three rivers suggesting that parr were shorter when there were more competitors for limited resources and the strength of this effect was river-specific (Figures 3 and 4a). The interaction between conspecific density and total mean discharge (DENTMF) was also retained and differed between rivers. Its effect was negative on all rivers but was generally weaker than the negative effect of conspecific density (Figures 3 and 4b). Summer minimum discharge (SMF), spring mean temperature (SPT), its square (SPT2) and WDD were also all retained and had a positive effect on mean age 0 parr length: SMF had a similar positive effect on all three rivers suggesting parr were longer in years when summer drought was less severe (Figures 3 and 4c); the effect of SPT was best described together with SPT2 as a similar quadratic curve on all three rivers with the strongest positive effect at intermediate temperatures (Figures 3 and 4d); WDD had a similar positive effect on all three rivers suggesting that parr were longer in years when winter was milder (Figures 3 and 4 e). The estimated indicator variable values are given in Table S6 and all had a mean value ≥ 0.5 and median value of 1 . We repeated our analysis using the winter NAO (NAO) index in place of WDD; the results were qualitatively and quantitatively
similar to the results with WDD, except that the effect of SPT was not retained (Figure S6).

Gelman's diagnostic statistics suggested that the MCMC chains were stationary and mixed well (Table S7). Neither the Site within River nor the Year within River random effect estimates diverged substantially from a theoretical normal distribution, supporting the assumption that they were normally distributed (Figure S7). Residuals did not show any systematic patterns for the length model. The Bayesian p value was .48 , indicating that the model fitted the data well (Figure S8).

4 | DISCUSSION

Our study demonstrates that environmental variables affect biological processes at different but predictable geographical scales. Actions to protect threatened populations from, for example, the impacts of climate change must therefore be formulated at a scale appropriate to the biological process being affected (Armstrong et al., 1998). We predicted and found that temperature-related environmental variables influence inter-annual changes in wild Atlantic salmon parr lengths at a regional scale, whereas non-temperature environmental variables, such as biotic interactions, influence them at a local scale (Poff \& Huryn, 1998). Specifically, we found that conspecific density and the interaction between conspecific density and total mean discharge (but not summer minimum flow) had "local" effects on parr lengths specific to each river, whereas WDD and spring mean temperature had "regional" effects that were similar on all three

FIGURE 3 Caterpillar plot showing the coefficient estimates (and 95\% Bayesian credible intervals) for each of the environmental variables included in the length model. Filled circles with solid bars identify coefficients retained in the model; hollow circles with dashed bars identify coefficients that were dropped. Where coefficient estimates are the same, the river-interaction effect has been dropped suggesting that the effect of that environmental variable can be represented as a single coefficient applicable to all three rivers, that is, its effect is "regional" rather than "local" (see text). DEN $=$ conspecific density, DENSPT $=$ conspecific density \times spring mean temperature, DENTMF $=$ conspecific density \times total mean discharge, SMF $=$ summer minimum discharge, SMT = summer maximum temperature, SMT2 = summer maximum temperature ${ }^{2}$, SPT $=$ spring mean temperature, SPT2 spring mean temperature ${ }^{2}$, TMF $=$ total mean discharge, WDD $=$ winter degree days, and WDD2 $=$ winter degree days ${ }^{2}$
geographically independent rivers. Furthermore, these effects were in the same direction as those generally reported from other salmon populations of the U.K. and France, and throughout their geographical range (see reviews by Armstrong, Kemp, Kennedy, Ladle, \& Milner, 2003; Milner et al., 2003; Jonsson \& Jonsson, 2009; and Warren, Dunbar, \& Smith, 2015).

Winter degree days and spring mean temperature (standardised within river) had a "regional" positive influence on age 0 parr lengths that was best represented as a single linear and quadratic main effect, respectively. We argue that as temperature-related variables, WDD and spring mean temperature affect physiological processes, such as individual metabolic rate, so their effects are expected to be similar between populations inhabiting independent rivers (Atkinson, 1994). Mechanistically, we hypothesise that the effect of WDD characterises faster development and earlier emergence of parr from their gravel nests in spring, which affords them a longer growing period (Jonsson \& Jonsson, 2009). Saltveit and Brabrand (2013) showed that salmon egg development and emergence occurred up to 40 days earlier in egg boxes situated nearest to warm groundwater seepages. Moreover, a semi-natural emergence experiment by Skoglund, Einum, and Robertsen (2011) found that eggs incubated at a higher temperature produced larger and better surviving parr compared to those incubated at lower ambient temperatures. We note that a positive effect of WDD suggests that parr are shorter after harsh, cold winters, perhaps because their development or emergence is retarded, and resources available post-emergence are scarce
due to lower in-river productivity or higher competition (Skoglund, Einum, Forseth, \& Barlaup, 2012). The effect of spring mean temperature was best characterised as a quadratic effect, with a maximum positive effect at intermediate temperatures, after which its effect was detrimental. Crozier et al. (2010) reported a quadratic effect of temperature on juvenile salmon length across 13 populations in Idaho, U.S.A. although their measure represented summer temperature. Swansburg, Chaput, Moore, Caissie, and El-Jabi (2002) describe how the mean length of juvenile salmon in the Northwest and Southwest Miramichi rivers is negatively related to spring mean temperature, presumably due to an increased metabolic cost of living at higher temperatures and limiting the energy available to devote to growth. Note that the infection point in length for these rivers occurred at a lower than the average river temperature (approximately -0.25), suggesting that cooler temperatures encouraged better growth, presumably through higher productivity.

The effect of winter North Atlantic Oscillation index (NAO; Hallett et al., 2004) on parr length was qualitatively and quantitatively similar to the effect of WDD, that is, a single coefficient representing a "regional" effect was retained (Figure S6). We suggest that NAO is related to WDD and is capturing the same effect on individual metabolic rates, as supported by their high correlation (Pearson's $r=.70$). Consequently, NAO could be used in the absence of any direct measure of water temperature (Ottersen et al., 2001). Interestingly, however, spring mean temperature was not retained in the NAO length model, suggesting that winter NAO captures some of

FIGURE 4 Partial effect plots for each of the environmental variables retained in the length model. Lines are plotted for immature and mature (Precocious $=1$) parr separately for each river. Variables are plotted on their standardised scale. Panels are: (a) conspecific density (DEN) (b) conspecific density \times total mean discharge (DENTMF) (c) summer minimum discharge (SMF) (d) spring mean temperature (SPT) and (e) winter degree days (WDD)
the variation in parr length otherwise explained by spring mean temperature. The relationship between WDD, spring mean temperature and winter NAO merits further investigation.

As predicted, the effects of conspecific density and its interaction with total mean discharge differed in strength (but not direction) between the three rivers, as indicated by the separation in their estimated Crls (Figure 3). The effect of conspecific density (standardised within river) was negative and differed strongly in strength on all three rivers. We hypothesise that the difference in the strength of the effect is due to river-specific influences on parr condition or density, which could be due to a number of factors and their interactions. For example, the rivers might differ in their productivity causing a difference in the amount or replenishment rate of a limiting resource (Armstrong et al., 2003). Or habitat available to the spawning stock might differ from one site to another, within and between rivers, perhaps due to different levels of
exploitation. Although the mechanism(s) remain speculative, the direction and strength of these conspecific density effects are consistent with other studies. For example, Richard, Cattaneo, and Rubin (2015) found a strong negative influence of density on brown trout length at nine locations along the river Boiron, Switzerland, which differed in strength between locations. The negative effect of density is supported by mean parr lengths trends that decrease over time, particularly since 2006 when parr density was consistently high (Figure 2). Compared to the strength of the conspecific density effect, its effect in interaction with total mean discharge was somewhat weaker although it also differed in strength on all three rivers (Figure 3). This suggests that total mean discharge affects mean age 0 parr lengths on these rivers indirectly through its effect on conspecific density (Figure 4b). We speculate that total mean discharge dampens the negative effect of conspecific density by delivering more resources, whether available habitat
or food, to lessen the per capita effect on inter-cohort competition (e.g. Davidson et al., 2010).

The effect of SMF (standardised within river) was positive butcontrary to our predictions - its strength was similar on all three rivers. We hypothesised that the effects of discharge would differ between rivers due to river-specific processes, perhaps related to geology or human activity (Warren et al., 2015). We speculate that the effect of SMF was similar between rivers because it represents a strong but acute effect that might overshadow weaker river-specific processes. The positive effect of higher SMF (i.e. less severe droughts) is supported by other studies. For example, Davidson et al. (2010) and Xu, Letcher, and Nislow (2010) both describe how juvenile salmonid growth increased with increasing summer discharge. Whether this effect is due to discharge directly or indirectly is not clear. Harvey, Nakamoto, and White (2006) showed that high (compared to low) discharge delivered more invertebrate food that boosted rainbow trout (Oncorhynchus mykiss, Family Salmonidae) growth rates. Although the effect of SMF was similar across rivers, we note that the effect of total mean discharge, albeit in interaction with conspecific density, was river-specific.

None of the remaining environmental variables (conspecific density interacting with spring mean temperature, summer maximum temperature and total mean discharge) were found to influence age 0 parr lengths despite reported findings to the contrary (Table 1). Possible explanations for this disparity include lack of a strong effect, as supported by conflicting effects for the same variables outlined in Table 2 in Jonsson and Jonsson (2009); different variable representations compared to other studies (e.g. Hallett et al., 2004); and our statistical methods differed from more conventional methods and did not rely on p values that are more likely to find "significant," but negligible effects by chance or due to a large number of cases (Ellison et al., 2014). Alternatively, these differences could be due to limitations in our own study. We might have omitted potentially important variables, for example, macrophyte cover and primary productivity which could affect the estimated effects of all other variables in the model. For example, although the effect of DoY was small ($<0.04 \mathrm{~mm}$ per day; equivalent to a maximum of 1.1, 0.9 and 0.67 mm during the longest annual survey on the Frome, Oir and Scorff, respectively), it suggested that parr measured later in the season are shorter than those measured earlier, which was counterintuitive and could be explained by an omitted variable. Also, we draw conclusions about the spatial scale of effects from just three geographically independent rivers although we feel that the geographical area encompassing these rivers is large enough to justify our conclusions.

Using a large and long-term database of Atlantic salmon parr length observations, we show that temperature-related environmental variables affect the body sizes of exothermic animals at a regional scale, whereas non-temperature environmental variables, such as precipitation and local human activities, exert their influence at a more local scale (Poff \& Huryn, 1998). This highlights the importance of integrating local and regional management plans to better manage ecosystems and their constituent species, particularly for salmon
(Armstrong et al., 1998): if the negative impact of these environmental variables intensifies under forecast climate change, or the balance between the environmental variables shifts to drive a shrinking trend in juvenile salmon parr, as has been observed on these three rivers (Figures 1 and S9), then the migrating smolt are likely to suffer greater marine mortality (e.g. Jutila, Jokikokko, \& Julkunen, 2006; Otero et al., 2014), resulting in a net decrease in the number of adult salmon returning to their natal rivers to spawn (Russell et al., 2012).

ACKNOWLEDGMENTS

We acknowledge GWCT, INRA and Cefas staff and volunteers for help collecting data used in this study. We thank Nicholas Aebischer, Didier Azam, Bettina Gruen, Donna Harris, Mevin Hooten, Anton Ibbotson, Dylan Roberts and Darren Wilkinson for their help. River Lab Long Term Monitoring (RLLTM) temperature data were collected and kindly provided by the Freshwater Biological Association. This work was part funded through the European Union Interreg Channel IVA funded project MorFish (Monitoring for Migratory Fish), with William Riley's involvement funded by the U.K. Government's Department for Environment, Food and Rural Affairs (Defra) under contract SFO272.

REFERENCES

Armstrong, J., Grant, J., Forsgren, H., Fausch, K., DeGraaf, R., Fleming, I., ... Schlosser, I. (1998). The application of science to the management of Atlantic salmon (Salmo salar): Integration across scales. Canadian Journal of Fisheries and Aquatic Sciences, 55, 303-311.
Armstrong, J., Kemp, P., Kennedy, G., Ladle, M., \& Milner, N. (2003). Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research, 62, 143-170.
Atkinson, D. (1994). Temperature and organism size: A biological law for ectotherms? Advances in Ecological Research, 25, 1-58.
Bacon, P. J., Gurney, W. S. C., Jones, W., Mclaren, I. S., \& Youngson, A. F. (2005). Seasonal growth patterns of wild juvenile fish: Partitioning variation among explanatory variables, based on individual growth trajectories of Atlantic salmon (Salmo salar) parr. Journal of Animal Ecology, 74, 1-11.
Baglinière, J.-L., \& Maisse, G. (1985). Precocious maturation and smoltification in wild Atlantic salmon in the Armorican Massif, France. Aquaculture, 45, 249-263.
Bal, G., Rivot, E., Prevost, E., Piou, C., \& Baglinière, J.-L. (2011). Effect of water temperature and density of juvenile salmonids on growth of young-of-the-year Atlantic salmon Salmo salar. Journal of Fish Biology, 78, 1002-1022.
Beaugrand, G., \& Reid, P. C. (2012). Relationships between North Atlantic salmon, plankton, and hydroclimatic change in the Northeast Atlantic. ICES Journal of Marine Science, 69, 1549-1562.
Brett, J. R. (1979). Environmental factors and growth. In W. S. Hoar, D. J. Randall, \& J. R. Brett (Eds.), Fish physiology: Bioenergetics and growth, Vol. 8 (pp. 599-677). NY: Academic Press.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., \& West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 17711789.

Chung, H., Loken, E., \& Schafer, J. L. (2004). Difficulties in drawing inferences with finite-mixture models. The American Statistician, 58, 152158.

Congdon, P. (2007). Bayesian statistical modelling. John Wiley \& Sons Ltd, Chichester, UK.

Crozier, L. G., Hendry, A. P., Lawson, P. W., Quinn, T. P., Mantua, N. J., Battin, J., ... Huey, R. B. (2008). Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon. Evolutionary Applications, 1, 252-270.
Crozier, L. G., \& Zabel, R. W. (2006). Climate impacts at multiple scales: Evidence for differential population responses in juvenile Chinook salmon. Journal of Animal Ecology, 75, 1100-1109.
Crozier, L. G., Zabel, R. W., Hockersmith, E. E., \& Achord, S. (2010). Interacting effects of density and temperature on body size in multiple populations of Chinook salmon. Journal of Animal Ecology, 79, 342-349.
Daufresne, M., Lengfellner, K., \& Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12788-12793.
Davidson, R. S., Letcher, B. H., \& Nislow, K. H. (2010). Drivers of growth variation in juvenile Atlantic salmon (Salmo salar): An elasticity analysis approach. Journal of Animal Ecology, 79, 1113-1121.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., ... Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.
Elliott, J. M., \& Elliott, J. A. (2010). Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. Journal of Fish Biology, 77, 1793-1817.
Ellison, A. M., Gotelli, N. J., Inouye, B. D., \& Strong, D. R. (2014). P values, hypothesis testing, and model selection: It's deja vu all over again. Ecology, 95, 609-610.
Fausch, K. D., Nakano, S., \& Ishigaki, K. (1994). Distribution of two congeneric charrs in streams of Hokkaido Island, Japan: Considering multiple factors across scales. Oecologia, 100, 1-12.
Folt, C. L., Nislow, K. H., \& Power, M. E. (1998). Implications of temporal and spatial scale for Atlantic salmon (Salmo salar) research. Canadian Journal of Fisheries and Aquatic Sciences, 55, Number S1, 9-21.
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian analysis, 1, 515-533.
Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine, 27, 2865-2873.
Gudmundsson, L., Tallaksen, L. M., \& Stahl, K. (2011). Spatial cross-correlation patterns of European low, mean and high flows. Hydrological Processes, 25, 1034-1045.
Hallett, T. B., Coulson, T., Pilkington, J. G., Clutton-Brock, T. H., Pemberton, J. M., \& Grenfell, B. T. (2004). Why large-scale climate indices seem to predict ecological processes better than local weather. Nature, 430, 71-75.
Harvey, B. C., Nakamoto, R. J., \& White, J. L. (2006). Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Transactions of the American Fisheries Society, 135, 998-1005.
Hooten, M. B., \& Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85, 3-28.
Hutchings, J. A. (2011). Old wine in new bottles: Reaction norms in salmonid fishes. Heredity, 106, 421-437.
Jasra, A., Holmes, C. C., \& Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modelling. Statistical Science, 20, 50-67.
Jensen, A. J., Forseth, T., \& Johnsen, B. O. (2000). Latitudinal variation in growth of young brown trout Salmo trutta. Journal of Animal Ecology, 69, 1010-1020.
Jonsson, B., \& Jonsson, N. (2009). A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology, 75, 2381-2447.
Jutila, E., Jokikokko, E., \& Julkunen, M. (2006). Long-term changes in the smolt size and age of Atlantic salmon, Salmo salar L, in a northern Baltic river related to parr density, growth opportunity and postsmolt survival. Ecology of Freshwater Fish, 15, 321-330.

Kanno, Y., Letcher, B. H., Hitt, N. P., Boughton, D. A., Wofford, J. E. B., \& Zipkin, E. F. (2015). Seasonal weather patterns drive population vital rates and persistence in a stream fish. Global Change Biology, 21, 1856-1870.
Kuo, L., \& Mallick, B. (1998). Variable selection for regression models. Sankhya: The Indian Journal of Statistics Series B, 60, 65-81.
Lobón-Cerviá, J. (2005). Spatial and temporal variation in the influence of density dependence on growth of stream-living brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences, 62, 1231-1242.
McCoy, M. W., \& Gillooly, J. F. (2008). Predicting natural mortality rates of plants and animals. Ecology Letters, 11, 710-716.
Milner, N. J., Cowx, I. G., \& Whelan, K. F. (2012). Salmonids and flows: A perspective on the state of the science and its application. Fisheries Management and Ecology, 19, 445-450.
Milner, N., Elliott, J., Armstrong, J., Gardiner, R., Welton, J., \& Ladle, M. (2003). The natural control of salmon and trout populations in streams. Fisheries Research, 62, 111-125.
Nislow, K. H., \& Armstrong, J. D. (2012). Towards a life-history-based management framework for the effects of flow on juvenile salmonids in streams and rivers. Fisheries Management and Ecology, 19, 451463.

Ntzoufras, I. (2002). Gibbs variable selection using BUGS. Journal of Statistical Software, 7, 1-19.
Otero, J., L'Abee Lund, J. H., Castro Santos, T., Leonardsson, K., Storvik, G. O., Jonsson, B. \& Dempson, B. (2014) Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Global Change Biology, 20, 61-75.
Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P., \& Stenseth, N. (2001). Ecological effects of the North Atlantic oscillation. Oecologia, 128, 1-14.
Parra, I., Almodovar, A., Ayllon, D., Nicola, G.-G., \& Elvira, B. (2012). Unravelling the effects of water temperature and density dependence on the spatial variation of brown trout (Salmo trutta) body size. Canadian Journal of Fisheries and Aquatic Sciences, 69, 821-832.
Poff, N. L., \& Huryn, A. D. (1998). Multi-scale determinants of secondary production in Atlantic salmon (Salmo salar) streams. Canadian Journal of Fisheries and Aquatic Sciences, 55, 201-217.
Richard, A., Cattaneo, F., \& Rubin, J.-F. (2015). Biotic and abiotic regulation of a low-density stream-dwelling brown trout (Salmo trutta L.) population: Effects on juvenile survival and growth. Ecology of Freshwater Fish, 24, 1-14.
Russell, I., Aprahamian, M., Barry, J., Davidson, I., Fiske, P., Ibbotson, A., ... Otero, J. (2012). The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. ICES Journal of Marine Science, 69, 1563-1573.
Saltveit, S. J., \& Brabrand, A. (2013). Incubation, hatching and survival of eggs of Atlantic salmon (Salmo salar) in spawning redds influenced by groundwater. Limnologica, 43, 325-331.
Sheridan, J. A., \& Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1, 401-406.
Skoglund, H., Einum, S., Forseth, T., \& Barlaup, B. T. (2012). The penalty for arriving late in emerging salmonid juveniles: Differences between species correspond to their interspecific competitive ability. Functional Ecology, 26, 104-111.
Skoglund, H., Einum, S., \& Robertsen, G. (2011). Competitive interactions shape offspring performance in relation to seasonal timing of emergence in Atlantic salmon. Journal of Animal Ecology, 80, 365-374.
Sogard, S. M. (1997). Size-selective mortality in the juvenile stage of teleost fishes: A review. Bulletin of Marine Science, 60, 1129-1157.
Swansburg, E., Chaput, G., Moore, D., Caissie, D., \& El-Jabi, N. (2002). Size variability of juvenile Atlantic salmon: Links to environmental conditions. Journal of Fish Biology, 61, 661-683.

Teichert, M. A. K., Kvingedal, E., Forseth, T., Ugedal, O., \& Finstad, A. G. (2010). Effects of discharge and local density on the growth of juvenile Atlantic salmon Salmo salar. Journal of Fish Biology, 76, 17511769.

Tenan, S., O'Hara, R. B., Hendriks, I., \& Tavecchia, G. (2014). Bayesian model selection: The steepest mountain to climb. Ecological Modelling, 283, 62-69.
Warren, M., Dunbar, M., \& Smith, C. (2015). River flow as a determinant of salmonid distribution and abundance: A review. Environmental Biology of Fishes, 98, 1695-1717.
Xu, C. L., Letcher, B. H., \& Nislow, K. H. (2010). Size-dependent survival of brook trout Salvelinus fontinalis in summer: Effects of water temperature and stream flow. Journal of Fish Biology, 76, 2342-2369.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Gregory SD, Nevoux M, Riley WD, et al. Patterns on a parr: Drivers of long-term salmon parr length in U.K. and French rivers depend on geographical scale. Freshwater Biol. 2017;00:1-13. https://doi.org/ 10.1111/fwb. 12929
Supporting Information
Supporting methods 2
Study sites and sampling 2
Frome 2
Oir \& Scorff 2
River water temperature and discharge data imputation 3
Age models 7
Length model 9
Explanatory variable correlation matrix 9
NAO correlation matrix 10
Supporting results 11
Age results 11
Length results 14
Annotated JAGS code for the Age model 20
15 Annotated JAGS code for the Length model 22

Supporting methods

Study sites and sampling

Rivers included in this study were the Frome (Dorset, UK), Oir (Normandy, France) and Scorff (Brittany, France). Table S presents basic summary statistics of the river and their catchments. In addition to these statistics, it is interesting to note the following differences:

- The Frome is a chalk stream river, fed largely from aquifers. The Scorff and Oir have a harder, less permeable granite bedrock and are largely rain-fed;
- The Scorff discharges into the ocean directly; the Frome discharges into Poole Harbour, the world's second largest natural harbour; and the Oir is a tributary of the larger Selune river;
- The Oir has a minor flow when compared with the Frome and Scorff.

Table S1. [Catchment descriptions] A table presenting river and catchment descriptions of the three rivers included in this study.

	River Oir		
Frome	Scorff		
Tidal limit lat. / long.	$50.677 /-2.117$	454	$87.742 /-3.348$
Catchment area: $\mathbf{~ k m}{ }^{2}$	69.8	87	480
Length: km	6.7	19.5	75
Mean flow: $\mathbf{~ m 3 ~ s - 1 ~}$	102	0.92	5.0
Q95: $\mathbf{m 3} \mathbf{s - 1}$	2.5	14	97
Gradient: mean \%		1.1	1.8

Atlantic salmon parr were captured by electrofishing from September to October on each river in each year, when they are large enough to be electro-fished and marked. Electrofishing surveys were part of long-term monitoring programmes on each river and followed consistent protocols with standardised effort. A brief description of each sampling protocol is outlined below:

Frome

Throughout the sampling period, fish capture was carried out using pulsed DC electric fishing. Two types of output waveforms were used, a half-wave rectified waveform and a square-wave waveform. Both were fished at 50 Hz and approximately 200 volts and the square-waveform was fished at $25-30 \%$ duty cycle. Fishing was normally carried out using a single anode (380 mm diameter and a 3000 mm cathode) but on occasions twin anode fishing was used. Two nets were used to capture salmon: one primary net held by the operator and one "back up" net. Specific conductivity of the river Frome is around $460 \mu \mathrm{Scm}^{-1}$, being a groundwater fed river this conductivity shows little variation ($\pm 50 \mu \mathrm{Scm}^{-1}$).

Oir \& Scorff

Throughout the study, a single electro-fishing unit was used (Martin Pêcheur, DREAM Electronique) delivering pulsed DC square-wave waveform fished at 400 Hz frequency, 200-350 volts and a 4-10\% duty cycle. The anode diameter was 250 mm . Three nets were used to capture salmon: one of 600 mm width and one of 400 mm width used to catch salmon within the $4-5 \mathrm{~m}$ zone electified by the anode, and one of 250 mm width used to catch salmon missed by those nets. Surveys were 5 mins effective fishing time, i.e., 5 mins with the anode in the water and electrified.

River water temperature and discharge data imputation

River water temperature and discharge data had missing values. To overcome this limitation, we imputed missing values using measured and interpolated air temperature and precipitation records (see article methods).

Here, we present the details of a small experiment we did to help decide the best imputation algorithm to use.

Based on this experiment, we decided to use impSeqRob.
To account for the possibility that the missing river water temperature and flow values might not be "Missing At Random" (MAR) but are "Missing Not At Random" (MNAR), we repeat an experiment with MAR and MNAR data using the impSeqRob and irmi algorithms.

```
## bootstrap function
impute.boot <- function(dat, miss.col = 'mean', n, n.missing = 100, missingness =
'MAR') {
    ## check missingness
    if(!missingness %in% c('MAR', 'MNAR')) stop('missingness must be MAR or MNAR')
    ## back up missing col data
    d <- dat[, miss.col]
    ## holding list
    df.irmi <- df.impSeqRob <- list()
    ## repeat in loop
    for(i in 1:n){
        ## reset dat
        dat[, miss.col] <- d
    ## add NAs to dataset
    if(missingness == 'MAR'){
        nas <- sample(x = 1:nrow(dat), size = n.missing, replace = FALSE)
        dat[, miss.col][nas] <- NA
    }else{
        ff <- factor(sort(sample(1:5, n.missing, replace = TRUE, prob = c(0.1, 0.1,
0.5, 0.2, 0.1))))
        splt <- split(1:n.missing, f = ff)
        nas.strt <- sample(x = 1:nrow(dat), size = 5, replace = TRUE)
        nas <- unlist(lapply(1:length(nas.strt), function(v) nas.strt[v] +
1:length(splt[[v]])))
        dat[, miss.col][nas] <- NA
    }
    ## fit models
    # irmi
    sink('NUL'); foo <- irmi(dat, trace = FALSE); sink()
    # impSeqRob
    fii <- impSeqRob(dat)
    fii <- data.frame(fii$x)
    fii$Date <- dat$Date
    ## add imputation indicator
    foo$Imp <- fii$Imp <- 0
    foo[nas, 'Imp'] <- 1
    fii[nas, 'Imp'] <- 1
    ## add residuals
    foo$Res <- foo[, miss.col] - d
    fii$Res <- fii[, miss.col] - d
```

```
1 1 0
1 1 1
112
113
114
115
116
117
118
1 1 9
120
121
122
123
124
125
126
127
128
129
130
131
132
1 3 3
134
135
136
137
138
139
140
141
142
1 4 3
144
145
146
147
148
1 4 9
150
151
152
153
154
155
156
157
158
1 5 9
160
161
162
1 6 3
164
165
166
167
168
169
170
171
172
173
174
175
176
```

```
        ## add to holding lists
```

 ## add to holding lists
 df.irmi[[i]] <- foo
 df.irmi[[i]] <- foo
 df.impSeqRob[[i]] <- fii
 df.impSeqRob[[i]] <- fii
 }
 ## aggregate dfs
 df.irmi <- do.call('rbind', df.irmi)
 df.impSeqRob <- do.call('rbind', df.impSeqRob)
 ## add index of iterations
 df.irmi$Iter <- rep(1:n, each = nrow(dat))
 df.impSeqRob$Iter <- rep(1:n, each = nrow(dat))
 ## return imputed data
 return(list('irmi' = df.irmi, 'impSeqRob' = df.impSeqRob))
 }

use the EObs mean, minimum and maximum temperatures

foo.df <- df[, c('Date', 'dailymeantemperature', 'dailymaximumtemperature',
'dailyminimumtemperature')]
colnames(foo.df)[2:4] <- c('mean', 'max', 'min')
head(foo.df)

Date mean max min

18629 2001-01-01 6.79 10.86 2.09

18630 2001-01-02 9.10 10.22 7.51

18631 2001-01-03 5.97 9.42 1.97

18632 2001-01-04 6.94 7.61 4.48

18633 2001-01-05 6.02 8.76 4.94

18634 2001-01-06 5.43 7.64 1.52

do MAR analysis

mar.res <- impute.boot(foo.df, miss.col = 'mean', n = 10, n.missing = 100,
missingness = 'MAR')

make data.frame

mar.df <- do.call('rbind', mar.res)
mar.df$Method <- factor(gsub('\\.[0-9]*$', '', rownames(mar.df)))

print sums of squares by method for each iteration and overall

ss.mar.iter <- aggregate(Res ~ Method + Iter, mar.df, function(v) sum(v^2))
ss.mar.all <- aggregate(Res ~ Method, mar.df, function(v) sum(v^2))
print(ss.mar.iter)

Method Iter Res

1 impSeqRob 1 25.18

2 irmi 1 48.19

3 impSeqRob 2 28.62

4 irmi 2 64.07

4

6 impseqRob irmi

7 impSeqRob 4 25.82

8 irmi 4 58.82

9 impSeqRob 5 34.17

10 irmi 5 53.79

11 impSeqRob 6 23.83

12 irmi 6 49.61

13 impSeqRob 7 28.97

14 irmi 7 61.33

15 impSeqRob 8 17.13

16 irmi 8 43.77

17 impSeqRob 9 17.67

18 irmi 9 52.07

19 impSeqRob 10 21.89

20 irmi 10 51.06

print(ss.mar.all)

```

177
178
```


Method Res

1 impSeqRob 263.7

2 irmi 558.0

do MNAR analysis

mnar.res <- impute.boot(foo.df, miss.col = 'mean', n = 10, n.missing = 100,
missingness = 'MNAR')

make data.frame

mnar.df <- do.call('rbind', mnar.res)
mnar.df$Method <- factor(gsub('\\.[0-9]*$', '', rownames(mnar.df)))

print sums of squares by method for each iteration and overall

ss.mnar.iter <- aggregate(Res ~ Method + Iter, mnar.df, function(v) sum(v^2))
ss.mnar.all <- aggregate(Res ~ Method, mnar.df, function(v) sum(v^2))
print(ss.mnar.iter)

Method Iter Res

1 impSeqRob 1 24.945

2 irmi 1 52.964

3 impSeqRob 2 5.036

4 irmi 2 31.049

5 impSeqRob 3 26.587

6 irmi 3 53.975

7 impSeqRob 4 7.337

8 irmi 4 40.687

9 impSeqRob 5 13.313

10 irmi 5 46.326

11 impSeqRob 6 19.088

12 irmi 6 52.490

13 impSeqRob 7 6.240

14 irmi 7 29.475

15 impSeqRob 8 8.222

16 irmi 8 30.158

17 impSeqRob 9 42.835

18 irmi 9 75.828

19 impSeqRob 10 9.420

20 irmi 10 39.248

print(ss.mnar.all)

Method Res

1 impSeqRob 163.0

2 irmi 452.2

```
(a)


Figure S1. [Imputation residual plots] Residuals (imputed - actual value) for each of 10 bootstrap datasets with values (a) Missing at Random (MAR) and (b) Missing Not at Random (MNAR).

224 Age models
(b)
(c)


228 Figure S2. [Juvenile salmon length density plots by year] Density plots showing the overlap in parr lengths in each year on the rivers (a) Frome, (b) Oir and (c) Scorff.


Figure S3. [Juvenile salmon length density plots by site] Density plots showing the overlap in parr lengths in each site on the rivers (a) Frome, (b) Oir and (c) Scorff.

\section*{Length model}

Explanatory variable correlation matrix
238 Table S2. [Explanatory variable correlation matrix] A correlation matrix between the environmental explanatory variables. Abbreviations are: DEN, conspecific density; WDD, winter degree days; SPT, spring mean temperature; SMT, summer maximum temperature; TMF, total mean discharge; SMF, summer minimum discharge; DENSPT, conspecific density and spring mean temperature product, and DENTMF, conspecific density and total mean discharge product.
\begin{tabular}{lrrrrrrrr} 
& & DEN & WDD & SPT & SMT & TMF & SMF & DENSPT
\end{tabular} DENTMF

NAO correlation matrix
245 Table S3. [Winter North Atlantic Oscillation index correlation matrix] A correlation matrix showing correlation between Winter North Atlantic Oscillation index (WNTNAO) and the other environmental variables. Abbreviations are: DEN, conspecific density; WDD, winter degree days; SPT, spring mean temperature; SMT, summer maximum temperature; TMF, total mean discharge; SMF, summer minimum discharge; DENSPT, conspecific density and spring mean temperature product, and DENTMF, conspecific density and total mean discharge product.
```

 DEN WDD SPT SMT TMF
 WDD -0.1023995 1.0000000 0.16726624 -0.1646876 0.4796696
WNTNAO -0.1358511 0.7024501 0.06490442 -0.1579133 0.5896265
SMF DENSPT DENTMF WNTNAO
WDD 0.2063852 0.1866084 0.03475113 0.7024501
WNTNAO 0.2743359 0.1589354 -0.01795812 1.0000000

```

\section*{Supporting results}

\section*{Age results}

Table S4. [Age model misclassification rates] Validation of the parr aging model predictions (misclassified ages are in italics). Note that the Scorff misclassification rates are considered unreliable because of possible scale-read aging errors.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{River} & \multirow[t]{2}{*}{Scale-read age} & \multicolumn{2}{|l|}{Model-assigned age} & \multirow[t]{2}{*}{Misclassification rate (\%)} \\
\hline & & 0 & 1 & \\
\hline \multirow[t]{2}{*}{Oir} & 0 & 672 & 4 & 0.59 \\
\hline & 1 & 17 & 316 & 5.11 \\
\hline \multirow[t]{2}{*}{Scorff} & 0 & 217 & 23 & 9.58 \\
\hline & 1 & 26 & 100 & 20.64 \\
\hline
\end{tabular}

Table S5. [Age model convergence statistics] Gelman statistic estimates for all estimated parameters in the age models. Note: an estimate of 1 suggested converged, stationary and well mixing chains.
\begin{tabular}{|l|l|c|c|}
\hline Estimate & River & Point estimate & Upper Confidence Interval \\
\hline delta & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline deviance & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline alpha & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline beta_d & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline beta_p & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline beta_s & Oir & all 1.00 & all 1.00 \\
\hline & Scorff & all 1.00 & all 1.00 \\
\hline beta_y & Oir & all 1.00 & all 1.00 \\
\hline & Scorff & all 1.00 & all 1.00 \\
\hline pAges[1] & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline pAges[2] & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline sigma & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline tau & Oir & 1.00 & 1.00 \\
\hline & Scorff & 1.00 & 1.00 \\
\hline & & \\
\hline
\end{tabular}


Figure S4. [Boxplots of scale-aged juvenile salmon lengths] Lengths of scale-read aged nonprecocious ( 0 ) and precocious (1) parr for the rivers Oir ( \(n=3214\) ) and Scorff ( \(n=381\) ). Note that (1) the Scorff plot is based on approximately \(10 \%\) of the amount of data as the Oir plot, and (2) there were only 3 and 28 age 0 and age \(>0\) parr judged to be precocious in the Scorff sample. Based on the small sample sizes the Scorff scale-read parr ages were not used to assess model accuracy.





(b)

Figure S5. [Juvenile salmon length histograms by estimated age] Histograms for the (a) Oir and (b) Scorff showing separation between the lengths of model-estimated freshwater age (AgeFW) age 0 and age \(>0\) parr.

\section*{Length results}

Table S6. [Length model indicator variable estimates] A table presenting the mean and standard deviation, together with the 2.5, 25,50, 75 and \(97.5 \%\) quantiles of the estimates for each indicator variable retained in the length model. All other environmental variables had a mean estimate <0.5 and \(50 \%\) quantile estimate of 0 and were dropped from the final model.
\begin{tabular}{|l|r|r|r|r|r|r|r|}
\cline { 5 - 8 } \multicolumn{7}{c|}{} & \multicolumn{6}{c|}{ Quantiles } \\
\hline Indicator variable & Mean & Standard Deviation & \(2.5 \%\) & \(25 \%\) & \(50 \%\) & \(75 \%\) & \(97.5 \%\) \\
\hline\(I_{\text {den }}\) & 1.00 & 0.00 & 1 & 1 & 1 & 1 & 1 \\
\hline\(I_{\text {den } \times \text { river }}\) & 1.00 & 0.00 & 1 & 1 & 1 & 1 & 1 \\
\hline\(I_{\text {den } \times \text { tmf }}\) & 1.00 & 0.00 & 1 & 1 & 1 & 1 & 1 \\
\hline\(I_{\text {den } \times \text { tmf } \times \text { river }}\) & 1.00 & 0.00 & 1 & 1 & 1 & 1 & 1 \\
\hline\(I_{\text {smf }}\) & 0.92 & 0.27 & 0 & 1 & 1 & 1 & 1 \\
\hline\(I_{s p t}\) & 0.77 & 0.42 & 0 & 1 & 1 & 1 & 1 \\
\hline\(I_{s p t^{2}}\) & 0.71 & 0.45 & 0 & 0 & 1 & 1 & 1 \\
\hline\(I_{w d d}\) & 1.00 & 0.00 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table S7. [Length model convergence statistics] Gelman statistic estimates for all estimated parameters in the age models. Note: an estimate of 1 suggested converged, stationary and well mixing chains.
\begin{tabular}{|l|c|c|}
\hline Estimate & Point estimate & Upper Confidence Interval \\
\hline a & 1.01 & 1.02 \\
\hline b_den & 1.01 & 1.04 \\
\hline b_denr[1] & 1.02 & 1.08 \\
\hline b_denr[2] & 1.02 & 1.06 \\
\hline b_denr[3] & 1.00 & 1.01 \\
\hline b_dentmf & 1.00 & 1.01 \\
\hline b_dentmfr[1] & 1.01 & 1.05 \\
\hline b_dentmfr[2] & 1.01 & 1.02 \\
\hline b_dentmfr[3] & 1.01 & 1.01 \\
\hline b_smf & 1.01 & 1.01 \\
\hline b_spt & 1.12 & 1.40 \\
\hline b_sptq & 1.15 & 1.42 \\
\hline b_wdd & 1.01 & 1.01 \\
\hline
\end{tabular}


Figure S6. [NAO coefficients] Caterpillar plot showing the coefficient estimates (and 95\% Bayesian credible intervals) for each of the environmental variables included in the length model with a measure of winter North Atlantic Oscillation (NAO) in place of Winter Degree Days (WDD). Filled circles with solid bars identify coefficients retained in the model; hollow circles with dashed bars identify coefficients that were dropped. Where coefficient estimates are the same, the riverinteraction effect has been dropped suggesting that the effect of that environmental variable can be represented as a single coefficient applicable to all three rivers, i.e., its effect is "regional" rather than "local" (see text). Abbreviations are: DEN, conspecific density; DENSPT, conspecific density \(x\) spring mean temperature; DENTMF, conspecific density \(x\) total mean discharge; SMF, summer minimum discharge, SMT, summer maximum temperature; SMT2, summer maximum temperature \({ }^{\wedge} 2\); SPT spring mean temperature; SPT2 spring mean temperature \({ }^{\wedge} 2 ;\) TMF total mean discharge; NAO, winter NAO; and NAO2, winter NAO ^2.


Figure S7. [Random effect QQ-plots] Quantile-quantile plots showing that the (a) Site within River and (b) Year within River random effects empirical distributions did not differ substantially from a theoretical normal distribution for the length model. Note: several effects are equal to 0 and have no variance because they represent sites or years that were not surveyed in some rivers.


Figure S8. [Length model adequacy plot] Plot showing the performance of the length model for replicate datasets. The Bayesian P value was 0.48 , indicating that this model provided an adequate fit to the data.


Figure S9. [Year random effect plot] Plot showing the year-specific random effect estimates plotted by year for the Frome (Dorset, UK), Oir (Normandy, France) and Scorff (Brittany, France). Note: there appears to be a residual declining trend in all three rivers that was not explained by the environmental explanatory variables used in this study.


Figure S10. [Site random effect maps] Maps showing the relative size of site-specific random effect estimates for the (a) Frome (Dorset, UK), (b) Oir (Normandy, France) and (c) Scorff (Brittany, France). Note: there does not appear to be any relationship to distance from tidal limit.

\section*{Annotated JAGS code for the Age model}
\{
```


notes

parameter code in parentheses, e.g., B_1, correspond with the explanatory variable in

eqn 1.

pAges is written as pi in eqn 1

intercept

alpha ~ dnorm(0, 0.001)

precocious fixed effect (B_1)

beta_p ~ dnorm(0, 0.001)

day of Year fixed effect (B_2)

I_beta_d ~ dnorm(0, 0.001)

site fixed effect (B_3)

beta_s[1] <- 0
for(i in 2:n_sites){
I_beta_s[i] ~ dnorm(0, 0.001)
}

year fixed effect (B_4)

for(i in 1:(n_years - 1)){
I_beta_y[i] ~ dnorm(0, 0.001)
}
I_beta_y[n_years] <- 0

error model

tau

tau ~ dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tau)

delta

delta ~ dnorm(0, 0.001);T(0,)

proportional age split

pAges[1:2] ~ ddirch(Ps[])

model fitting

for(i in 1:n_fishes){
\#\# length error estimate
Length_mm[i] ~ dnorm(mu[i], tau)
\#\# average length estimate
mu_prime[i] <- I_alpha + (I_beta_p * Precocious[i]) + (I_beta_d * DoY[i]) +
I_beta_s[Site[i]] + I_beta_y[Year[i]]\nmu[i] <- mu_prime[i] + ((Age[i] - 1) * delta)

```

381
382
383
384
385
386
387
388
\# Estimate age
Age[i] ~ dcat(pAges[])
\} \# end of fish loop
\}

\section*{Annotated JAGS code for the Length model}
```


notes

- parameter names correspond with the environmental explanatory variable

abbreviations used in the main text. For example, "b_den" is the coefficient

capturing the strength of the effect of conspecific density or DEN on mean age 0

parr lengths. Parameters ending with "_p" or "_p_tmp" are related to indicator

variables. Parameters ending with "r" are river interactions, those ending with "q"

are quadratic terms and those ending with "rq" are quadratic terms in interaction

with river.

- main effects are given the weakly informative prior dnorm(0, 0.001)

- variance terms are given the weakly informative prior dgamma(1, 0.001)

- terms are included conditional upon other terms, according to the following rules:

+ a main effect is included with probability 1.0 if the river interaction effect is

included, otherwise it is included with probability 0.5

+ a quadratic main term is included with probability 0.5 if the linear main term is

included, otherwise it is not included

+ a quadratic river interaction term is included with probability 0.5 if the linear

river interaction term is included, otherwise it is not included

- model adequacy is measured using simulated datasets to calculate the Bayesian P value

```
```


intercept

```
## intercept
    a ~ dnorm(0, 0.01)
    a ~ dnorm(0, 0.01)
    ## river main effect
    ## river main effect
    for (r in 1:n_rivers) {
    for (r in 1:n_rivers) {
    b_r[r] ~ dnorm(0, tau_b_r)
    b_r[r] ~ dnorm(0, tau_b_r)
}
}
tau_b_r ~ dgamma(1, 0.01)
tau_b_r ~ dgamma(1, 0.01)
## precocious main effect and precocious * river interaction effect
## precocious main effect and precocious * river interaction effect
b_precocious ~ dnorm(0, 0.01)
b_precocious ~ dnorm(0, 0.01)
for(r in 1:(n_rivers - 1)){
for(r in 1:(n_rivers - 1)){
    b_precociousr[r] ~ dnorm(0, 0.01)
    b_precociousr[r] ~ dnorm(0, 0.01)
}
}
b_precociousr[n_rivers] <- -sum(b_precociousr[1:(n_rivers - 1)])
b_precociousr[n_rivers] <- -sum(b_precociousr[1:(n_rivers - 1)])
## doy main effect
## doy main effect
b_doy ~ dnorm(0, 0.01)
b_doy ~ dnorm(0, 0.01)
## den effects
## den effects
### den linear main effect conditional on linear interaction term
### den linear main effect conditional on linear interaction term
b_den_tmp ~ dnorm(0, 0.01)
b_den_tmp ~ dnorm(0, 0.01)
b_den_p_tmp <- b_denr_p + ((1 - b_denr_p) * 0.5)
b_den_p_tmp <- b_denr_p + ((1 - b_denr_p) * 0.5)
b_den_p ~ dbern(b_den_p_tmp)
b_den_p ~ dbern(b_den_p_tmp)
b_den <- b_den_p* b_den_tmp
b_den <- b_den_p* b_den_tmp
### den * river interaction term
### den * river interaction term
for(r in 1:n_rivers){
```

for(r in 1:n_rivers){

```
```

 b_denr_p_tmp[r] ~ dbern(0.5)
 }
b_denr_p ~ dbern(sum(b_denr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_denr_tmp[r] ~ dnorm(0, 0.01)
}
b_denr_tmp[n_rivers] <- -sum(b_denr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_denr[r] <- b_denr_p * b_denr_tmp[r]
}

wdd effects

wdd linear main effect conditional on linear interaction term

b_wdd_tmp ~ dnorm(0, 0.01)
b_wdd_p_tmp <- b_wddr_p + ((1 - b_wddr_p) * 0.5)
b_wdd_p ~ dbern(b_wdd_p_tmp)
b_wdd <- b_wdd_p * b_wdd_tmp

wdd quadratic main effect conditional on linear main effect term

b_wddq_tmp ~ dnorm(0, 0.01)
b_wddq_p_tmp <- b_wdd_p * 0.5
b_wddq_p ~ dbern(b_wddq_p_tmp)
b_wddq <- b_wddq_p * b_wddq_tmp

wdd * river interaction term

for(r in 1:n_rivers){
b_wddr_p_tmp[r] ~ dbern(0.5)
}
b_wddr_p ~ dbern(sum(b_wddr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_wddr_tmp[r] ~ dnorm(0, 0.01)
}
b_wddr_tmp[n_rivers] <- -sum(b_wddr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_wddr[r] <- b_wddr_p * b_wddr_tmp[r]
}

wdd * river interaction term conditional on linear interaction term

p_wddrq <- b_wddr_p * 0.5
for(r in 1:n_rivers){
b_wddrq_p_tmp[r] ~ dbern(p_wddrq)
}
b_wddrq_p ~ dbern(sum(b_wddrq_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_wddrq_tmp[r] ~ dnorm(0, 0.01)
}
b_wddrq_tmp[n_rivers] <- -sum(b_wddrq_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_wddrq[r] <- b_wddrq_p * b_wddrq_tmp[r]
}

spt effects

spt linear main effect conditional on linear interaction term

b_spt_tmp ~ dnorm(0, 0.01)

```
```

b_spt_p_tmp <- b_sptr_p + ((1 - b_sptr_p) * 0.5)
b_spt_p ~ dbern(b_spt_p_tmp)
b_spt <- b_spt_p * b_spt_tmp

spt quadratic main effect conditional on linear main effect term

b_sptq_tmp ~ dnorm(0, 0.01)
b_sptq_p_tmp <- b_spt_p * 0.5
b_sptq_p ~ dbern(b_sptq_p_tmp)
b_sptq <- b_sptq_p * b_sptq_tmp

spt * river interaction term

for(r in 1:n_rivers){
b_sptr_p_tmp[r] ~ dbern(0.5)
}
b_sptr_p ~ dbern(sum(b_sptr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_sptr_tmp[r] ~ dnorm(0, 0.01)
}
b_sptr_tmp[n_rivers] <- -sum(b_sptr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_sptr[r] <- b_sptr_p * b_sptr_tmp[r]
}

spt * river interaction term conditional on linear interaction term

p_sptrq <- b_sptr_p * 0.5
for(r in 1:n_rivers){
b_sptrq_p_tmp[r] ~ dbern(p_sptrq)
}
b_sptrq_p ~ dbern(sum(b_sptrq_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_sptrq_tmp[r] ~ dnorm(0, 0.01)
}
b_sptrq_tmp[n_rivers] <- -sum(b_sptrq_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_sptrq[r] <- b_sptrq_p * b_sptrq_tmp[r]
}

smt effects

smt linear main effect conditional on linear interaction term

b_smt_tmp ~ dnorm(0, 0.01)
b_smt_p_tmp <- b_smtr_p + ((1 - b_smtr_p) * 0.5)
b_smt_p ~ dbern(b_smt_p_tmp)
b_smt <- b_smt_p * b_smt_tmp

smt quadratic main effect conditional on linear main effect term

b_smtq_tmp ~ dnorm(0, 0.01)
b_smtq_p_tmp <- b_smt_p * 0.5
b_smtq_p ~ dbern(b_smtq_p_tmp)
b_smtq <- b_smtq_p * b_smtq_tmp

smt * river interaction term

for(r in 1:n_rivers){
b_smtr_p_tmp[r] ~ dbern(0.5)
}
b_smtr_p ~ dbern(sum(b_smtr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){

```
```

 b_smtr_tmp[r] ~ dnorm(0, 0.01)
 }
b_smtr_tmp[n_rivers] <- -sum(b_smtr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_smtr[r] <- b_smtr_p * b_smtr_tmp[r]
}

smt * river interaction term conditional on linear interaction term

p_smtrq <- b_smtr_p * 0.5
for(r in 1:n_rivers){
b_smtrq_p_tmp[r] ~ dbern(p_smtrq)
}
b_smtrq_p ~ dbern(sum(b_smtrq_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_smtrq_tmp[r] ~ dnorm(0, 0.01)
}
b_smtrq_tmp[n_rivers] <- -sum(b_smtrq_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_smtrq[r] <- b_smtrq_p * b_smtrq_tmp[r]
}

tmf effects

tmf linear main effect conditional on linear interaction term

b_tmf_tmp ~ dnorm(0, 0.01)
b_tmf_p_tmp <- b_tmfr_p + ((1 - b_tmfr_p) * 0.5)
b_tmf_p~ dbern(b_tmf_p_tmp)
b_tmf <- b_tmf_p * b_tmf_tmp

tmf * river interaction term

for(r in 1:n_rivers){
b_tmfr_p_tmp[r] ~ dbern(0.5)
}
b_tmfr_p ~ dbern(sum(b_tmfr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_tmfr_tmp[r] ~ dnorm(0, 0.01)
}
b_tmfr_tmp[n_rivers] <- -sum(b_tmfr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_tmfr[r] <- b_tmfr_p * b_tmfr_tmp[r]
}

smf effects

smf linear main effect conditional on linear interaction term

b_smf_tmp ~ dnorm(0, 0.01)
b_smf_p_tmp <- b_smfr_p + ((1 - b_smfr_p) * 0.5)
b_smf_p ~ dbern(b_smf_p_tmp)
b_smf <- b_smf_p * b_smf_tmp

smf * river interaction term

for(r in 1:n_rivers){
b_smfr_p_tmp[r] ~ dbern(0.5)
}
b_smfr_p ~ dbern(sum(b_smfr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){

```
```

 b_smfr_tmp[r] ~ dnorm(0, 0.01)
 }
b_smfr_tmp[n_rivers] <- -sum(b_smfr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_smfr[r] <- b_smfr_p * b_smfr_tmp[r]
}

den * spt interaction effects

denspt linear main effect conditional on linear interaction term

b_denspt_tmp ~ dnorm(0, 0.01)
b_denspt_p_tmp <- b_densptr_p + ((1-b_densptr_p) * 0.5)
b_denspt_p ~ dbern(b_denspt_p_tmp)
b_denspt <- b_denspt_p * b_denspt_tmp

denspt * river interaction term

for(r in 1:n_rivers){
b_densptr_p_tmp[r] ~ dbern(0.5)
}
b_densptr_p ~ dbern(sum(b_densptr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_densptr_tmp[r] ~ dnorm(0, 0.01)
}
b_densptr_tmp[n_rivers] <- -sum(b_densptr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_densptr[r] <- b_densptr_p * b_densptr_tmp[r]
}

den * tmf interaction effects

dentmf linear main effect conditional on linear interaction term

b_dentmf_tmp ~ dnorm(0, 0.01)
b_dentmf_p_tmp <- b_dentmfr_p + ((1-b_dentmfr_p) * 0.5)
b_dentmf_p ~ dbern(b_dentmf_p_tmp)
b_dentmf <- b_dentmf_p * b_dentmf_tmp

dentmf * river interaction term

for(r in 1:n_rivers){
b_dentmfr_p_tmp[r] ~ dbern(0.5)
}
b_dentmfr_p ~ dbern(sum(b_dentmfr_p_tmp) / n_rivers)
for(r in 1:(n_rivers - 1)){
b_dentmfr_tmp[r] ~ dnorm(0, 0.01)
}
b_dentmfr_tmp[n_rivers] <- -sum(b_dentmfr_tmp[1:(n_rivers - 1)])
for(r in 1:n_rivers){
b_dentmfr[r] <- b_dentmfr_p * b_dentmfr_tmp[r]
}

site within river random effect with half-normal variance

for(r in 1:n_rivers){
mu_r_s[r] <-0
sigma_r_s[r] ~ dnorm(0, 0.01);T(0,)
for(s in (n_sites[r] + 1):max(n_sites)){
u[r,s]<-0

```
```

 }
 for(s in 1:n_sites[r]){
 u[r, s] ~ dnorm(mu_r_s[r], sigma_r_s[r])
 }
 }
 ## year within river random effect with half-normal variance
 for(r in 1:n_rivers){
 mu_r_y[r] <- 0
 sigma_r_y[r] ~ dnorm(0, 0.01);T(0,)
 for(y in (n_years[r] + 1):max(n_years)){
 v[r, y] <- 0
 }
 for(y in 1:n_years[r]){
 v[r, y] ~ dnorm(mu_r_y[r], sigma_r_y[r])
 }
 }
 ## model error
 tau ~ dgamma(0.001, 0.001)
 sigma <- 1/sqrt(tau)
 ## model fitting
 for (i in 1:n_fishes) {
 Length_mm[i] ~ dnorm(mu[i], tau)
 mu[i] <- a + b_r[River[i]] +
 b_precocious * Precocious[i] + b_precociousr[River[i]] * Precocious[i] +
 b_doy * DoY[i] +
 b_den * deltaDens[i] + b_denr[River[i]] * deltaDens[i] +
 b_wdd * WntDegD[i] + b_wddq * WntDegD[i]^2 + b_wddr[River[i]] * WntDegD[i] +
 b_wddrq[River[i]] * WntDegD[i]^2 +
b_spt * SpgAvgT[i] + b_sptq * SpgAvgT[i]^2 + b_sptr[River[i]] * SpgAvgT[i] +
b_sptrq[River[i]] * SpgAvgT[i]^2 +
b_smt * SmrMaxT[i] + b_smtq * SmrMaxT[i]^2 + b_smtr[River[i]] * SmrMaxT[i] +
b_smtrq[River[i]]* SmrMaxT[i]^2 +
b_tmf * TotAvgF[i] + b_tmfr[River[i]] * TotAvgF[i] +
b_smf * SmrMinF[i] + b_smfr[River[i]] * SmrMinF[i] +
b_denspt * DensSpt[i] + b_densptr[River[i]] * DensSpt[i] +
b_dentmf * DensTmf[i] + b_dentmfr[River[i]] * DensTmf[i] +
u[River[i], Site[i]] + v[River[i], Year[i]]
}
\#\# model adequacy; Bayesian P value
for(i in 1:n_fishes){
res[i] <- (Length_mm[i] - mu[i]) / sigma
p.res[i] <- phi(res[i])
pred[i] ~ dnorm(mu[i], tau)
p.pred[i] <- step(Length_mm[i] - pred[i])

```
```

 res.pred[i] <- (Length_mm[i] - pred[i]) / sigma
 }
D.fit <- sum(res[])
D.fit.pred <- sum(res.pred[])
}

```
```

