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Abstract

1. Understanding the geographical scales at which environmental variables affect

an individual’s body size, and thus their mortality risk, can inform management

strategies to help conserve wild populations under climate change. Yet, our cur-

rent understanding of these relationships is based on studies done at different

scales that report inconsistent findings. We predicted that temperature-related

variables (e.g. winter temperature) influence body size at a “regional” scale, that

is, affecting individuals in geographically independent catchments similarly,

whereas non-temperature-related variables (e.g. conspecific competitor density)

exert a “local” influence, that is, affecting individuals in geographically indepen-

dent catchments differently.

2. We developed statistical models to test our predictions using body length mea-

sures of a large and long-term sample of juvenile Atlantic salmon (Salmo salar)

from three rivers in the U.K. and France. We developed mixture models to pre-

dict the individual juvenile salmon ages objectively from their body length. We

then developed linear mixed models to describe inter-annual changes in mean

length of the youngest (age 0) cohort of juvenile salmon from river-specific sea-

sonal variables, and tested whether they exerted their influence at a “local” or

“regional” scale. All models accounted for spatio-temporal differences in sampling

protocols and individual reproductive strategy. We estimated and interpreted

coefficients using Bayesian theory.

3. Our findings supported our predictions. Juvenile salmon were longer in years of

higher overwinter water temperature and this effect was best parameterised as a

single “regional” coefficient applicable to all three rivers. Similarly, spring mean

temperature was best parameterised with a single “regional” nonlinear coeffi-

cient. In contrast, juvenile salmon were shorter in years of high densities of com-

peting conspecifics and their interaction with total mean discharge and these

effects were represented by “local” river-specific coefficients. Summer droughts

had a negative effect on juvenile salmon length but was best parameterised as a

single “regional” coefficient, contrary to our expectations.

4. We show that environmental variables affect biological processes at different

but predictable geographical scales. Temperature-related variables affect body
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sizes of exothermic animals at a regional scale, whereas non-temperature vari-

ables, such as the density of conspecific competitors and water abstraction, exert

their influence at a local scale. These findings highlight the importance of inte-

grating local and regional management plans to mitigate the impacts of climate

change on the body size, and ultimately the conservation, of exothermic species.
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Atlantic salmon, body size, climate change, density dependence, geographical scale

1 | INTRODUCTION

Survival is positively related to body size in a wide range of plants

and animals, from phytoplankton to mammals (McCoy & Gillooly,

2008). The mechanism(s) underpinning this relationship could be

intrinsic because larger individuals have lower metabolic rates and

lower rates of cell damage (Brown, Gillooly, Allen, Savage, & West,

2004) and/or extrinsic because larger individuals have a competitive

advantage or lower per capita predation risk (Sogard, 1997). Never-

theless, evidence of this relationship is widespread and some

researchers postulate that the “bigger is better” paradigm (sensu Sog-

ard, 1997) should be an ecological “rule” (McCoy & Gillooly, 2008).

Size-dependent survival is important for population conservation

because there is mounting evidence that individual body size is

shrinking in response to climate change. Sheridan and Bickford

(2011) found that 38 of 85 (45%) studies of taxa from plants to

mammals relating body size with climatic variables reported a

decrease in size, compared to just 9 of 85 (11%) reporting an

increase (45% reported equivocal results). These changes are (in part)

ascribed to the direct or indirect effects of changing mean tempera-

ture and precipitation and their variability, including their extremes

(Sheridan & Bickford, 2011). Together, these findings suggest that

climate change negatively impacts wildlife populations through

reduced survival of shrinking individuals.

As ectotherms, freshwater fish are strongly influenced by envi-

ronmental conditions that act on their metabolic rates, affecting their

growth and size (Atkinson, 1994). Experimental studies have shown

that temperature and energy consumption are among the most

important factors affecting somatic growth of fish (Brett, 1979). Evi-

dence from empirical field studies is less common and suggests that

climate change will drive decreasing body size-at-age in wild fresh-

water fish (e.g. in cyprinids; Daufresne, Lengfellner, & Sommer,

2009), and that smaller fish will suffer higher mortality (Sogard,

1997). Consequently, there is a mounting urgency to understand

how environmental variables affect freshwater fish growth in natural

systems (Jonsson & Jonsson, 2009). For example, Bacon, Gurney,

Jones, Mclaren, and Youngson (2005) found positive correlations

between spring temperatures and individual juvenile Atlantic salmon

(Salmo salar, Family Salmonidae; hereafter, salmon) growth and basal

metabolic and assimilation rates in a tributary of the river Dee, Scot-

land. Davidson, Letcher, and Nislow (2010) describe how juvenile

salmon growth varied with seasonally changing river discharge in a

tributary of the Connecticut River, U.S.A., decreasing when discharge

was low. Another variable—conspecific density (or density of salmon

of the same cohort)—has also been shown to negatively affect fish

growth, as individuals compete for limited local resources. For exam-

ple, Bal, Rivot, Prevost, Piou, and Baglini�ere (2011) found that sal-

mon and brown trout brown trout (Salmo trutta, Family Salmonidae)

juvenile density had a strong effect on juvenile salmon growth on

the river Oir, France.

Many empirical field studies investigating how environmental

variables affect wild freshwater fish growth have considered only a

single waterbody at a single scale, that is, a river or lake. Findings

from single waterbodies are, however, often inconsistent because

local conditions differ between waterbodies (e.g. habitat availability;

Lob�on-Cervi�a, 2005) or environmental variables and their analysis

differ between studies (e.g. including interactions [Crozier, Zabel,

Hockersmith, & Achord, 2010] or nonlinear effects [Parra, Almod-

ovar, Ayllon, Nicola, & Elvira, 2012]). Alternatively, environmental

variables could influence biological processes at different geographi-

cal scales, rendering findings from single waterbody studies location-

specific (Folt, Nislow, & Power, 1998). Fausch, Nakano, and Ishigaki

(1994) found that the relationship between overlap in distributions

of congeneric Char (Salvelinus sp., family Salmonidae) on Hokkaido

Island, Japan, and temperature varied depending on the scale at

which the observations were collected.

Poff and Huryn (1998) postulated that some variables, such as

water temperature, affect wild salmon at regional scales (e.g. conti-

nent-wide), whereas others, such as species’ interactions, affect them

at local scales (e.g. habitat patches). Mechanistically, a “regional”

effect of temperature on juvenile salmon growth could reflect its

ubiquitous and strong effect on individual metabolic rate, which

transcends geographical boundaries (Folt et al., 1998). Conversely, a

“local” effect of a non-temperature variable, for example, species’

interactions or river discharge, on growth could reflect river-specific

processes, such as localised habitat availability, rainfall events or dif-

ferences in water abstraction regimes (Folt et al., 1998). Evidence

supporting (and opposing) Poff and Huryn’s hypotheses from studies

across multiple waterbodies is presented in Table 1 and generally

supports the hypothesis of a regional temperature effect and a local

conspecific density effect. The evidence supporting a local effect of

river discharge is, however, more equivocal. For example,

Gudmundsson, Tallaksen, and Stahl (2011) found spatio-temporal

correlations in a wide range of discharge measures over a network
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of semi-natural European rivers although measures of low discharge

were less correlated over space. Milner, Cowx, and Whelan (2012)

suggest that the effects of river discharge on salmonids may be loca-

lised because of differences in river geomorphology and water

abstraction regimes.

In this study, we aim to (1) identify environmental variables influ-

encing inter-annual changes in juvenile wild salmon lengths recorded

on three geographically independent rivers, and (2) test which of

those were influencing their lengths at a regional scale. We define a

regional scale as the geographical area encompassing the three inde-

pendent catchments of the rivers Frome, Oir and Scorff; many stud-

ies in Table 1 investigate patterns across non-independent rivers,

that is, rivers in the same catchment. In contrast, we define a local

scale as the geographical area encompassing the single catchment of

each river. As recommended by Folt et al. (1998), we estimated the

effect of environmental variables on inter-annual changes in average

juvenile salmon lengths with a multi-scale analysis, that is, allowing

the data to estimate whether and at what scale environmental vari-

ables effect salmon lengths. Despite the difficulties associated with

such an analysis (Folt et al., 1998), we feel that the spatial and tem-

poral extents of our data (three independent catchments, followed

for up to 25 years), the large number of individuals measured (ap-

proximately 100,000) afford us the empirical and statistical power to

address these aims without bias. We predict that (1) temperature-

related variables will act at the regional scale because temperature

effects growth at the level of individual physiology, and (2) non-tem-

perature variables, for example, discharge and conspecific density,

will act at the local scale because their effects are modified by local-

TABLE 1 Environmental explanatory variables used to describe inter-annual changes in mean juvenile salmon length on the rivers Frome,
Oir and Scorff, their description, their hypothesised influence and citations of studies that suggest their influence will be apparent at a local
(river-specific) or a regional (similar across all rivers) geographical scale

Name Description Influence

Suggested scale
of effect

Local Regional

Temperature

Winter degree days

(WDD)

Degree days from 1 January to 31 March Positive influence due to better egg growth

conditions or early hatching

1 2

Winter degree days2

(WDD2)

Squared WDD to allow nonlinear relationship Negative influence at high values due to low

oxygen during development

— 2

Spring mean temperature

(SPT)

Mean temperature from 1 April to 30 June Positive influence due to better growth

environment, particularly primary productivity

— 3

Spring mean

temperature2 (SPT2)

Squared SPT to allow nonlinear relationship Negative influence at high values due to

thermal stress

— 4

Summer maximum

temperature (SMT)

Maximum mean temperature during seven

consecutive days from 1 July to 31 September

Positive influence due to high productivity — 5

Summer maximum

temperature2 (SMT2)

Squared SMT to allow nonlinear relationship Negative influence at high value due to

thermal stress

6 5

Discharge

Total mean discharge

(TMF)

Mean discharge from 1 April to 31 September Positive influence due to increased food

availability and available habitat to reduce

density dependent effects

7 8

Summer minimum

discharge (SMF)

Minimum discharge during seven consecutive days

from 1 July to 31 September

Negative influence due to thermal stress and

less available food

9 9

Other

Conspecific density

(DEN)

Conspecific density at site and time of capture Negative influence due to less per capita

available food

6 10

Conspecific

density 9 spring mean

temperature (DENSPT)

Interaction between conspecific density and

spring mean temperature

Negative influence of less per capita available

food will be offset by the positive influence

of increased primary productivity

— 10

Conspecific

density 9 total mean

discharge (DENTMF)

Interaction between conspecific density and total

mean discharge

Negative influence of less per capita available

food will be offset by the positive influence

of increased food availability

11 —

Winter NAO index

(NAO)

Mean North Atlantic Oscillation index from 1

December to 31 March

Proxy for WDD — 2

References: (1) Crozier et al., (2008); (2) Elliott & Elliott, (2010); (3) Jensen, Forseth, & Johnsen, (2000); (4) Swansburg et al., (2002); (5) Parra et al.,

(2012); (6) Lobon-Cervia, (2005); (7) Crozier & Zabel, (2006); (8) Gudmundsson et al., (2011); (9) Nislow & Armstrong, (2012); (10) Crozier et al., (2010);

(11) Teichert, Kvingedal, Forseth, Ugedal, & Finstad, (2010).
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scale processes and activities, such as precipitation, water abstrac-

tion regimes and spawning stock size. Finally, we investigate

whether the winter North Atlantic Oscillation index can be used in

place of locally measured temperature variables (Hallett et al., 2004)

to further test the hypothesis that temperature-related variables

operate a large geographical scales.

2 | METHODS

2.1 | Study species and locations

Atlantic salmon spawn in coastal rivers and a few inland systems in

the West Atlantic North America from Ungava Bay to Connecticut

River and in the East Atlantic from Petchora in Russia to Lima in

Portugal. Adults spawn eggs in freshwater river gravel beds, which

hatch and grow to become juvenile salmon parr that undergo physio-

logical changes and migrate to sea as smolts. At sea, they grow and

(usually) attain sexual maturity and become adults, which eventually

return to their natal rivers to spawn. Depending on latitude, this life-

cycle can take between 3 and 10 years. Although the reasons are

still unclear (but see, e.g. Beaugrand & Reid, 2012), Atlantic salmon

populations are in decline throughout their geographical range, rais-

ing concerns for their persistence, particularly in southern and cen-

tral Europe.

Parr data were collected on three rivers separated by the Eng-

lish Channel: the Frome (Dorset, U.K.), Oir (Normandy, France) and

Scorff (Brittany, France) (Figure 1). These rivers were chosen for

two reasons: (1) they have significant regional salmon populations

whose parr have been monitored using consistent methods for

10–25 years, and (2) they drain geographically independent catch-

ments (Table S1). All three rivers are “index rivers” that report sal-

mon stock estimates to the International Council for the

Exploration of the Seas.

2.2 | Data collection and preparation

Parr were captured by electrofishing from September to October on

each river in each year, when they are large enough to be electro-

fished and marked. Electrofishing surveys were part of long-term

monitoring programmes on each river and followed consistent proto-

cols with standardised effort. Each parr was measured from the tip

of the snout to the tail fork (hereafter length to the nearest millime-

tre, mm), examined for evidence of sexual maturity (mature if it had

a soft and distended underbelly from enlarged gonads [Frome] or

produced milt when massaged gently [Oir and Scorff]) and aged from

a scale or—more often—by visual assessment from length. River,

Site, Year and Day of Year were also recorded for each parr. All pro-

cedures were carried out under appropriate national licences and

regulations.

River water temperature and discharge were measured on each

river at a sub-daily (usually 15 min) interval. Each dataset had miss-

ing data, complicating the calculation of consistent explanatory

environmental variables. To overcome this, we imputed missing

data using the impSeqRob function of R package rrcovNA using

spatially and temporally consistent E-Obs gridded data (version

10.0; http://eca.knmi.nl/dailydata/index.php) as predictors. We

chose impSeqRob over alternative methods because it performed

better in a small simulation experiment (Supporting Information).

We used the resulting complete daily river water temperature and

discharge datasets to calculate environmental variables purported

to influence inter-annual changes in parr lengths in the scientific lit-

erature (Table 1).

Parr used in these analyses were caught at sites sampled con-

sistently over time as part of river-specific long-term monitoring

programmes and for which a relative index of annual parr density

could be calculated. Total annual parr captures at each site were

used as a site-specific index of relative annual changes in

Frome

Oir

Scorff

English channel

48

49

50

51

–6 –4 –2 0 2

Latitude

Lo
ng

itu
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F IGURE 1 A map showing the locations of the three rivers included in this study: rivers Frome (Dorset, U.K.), Oir (Normandy, France) and
Scorff (Brittany, France)
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conspecific density. Although conspecific density was not a mea-

sure of true density in any particular year, inter-annual changes

in conspecific density were assumed to correspond to inter-

annual changes in true density. A more rigorous approach to

using an index of parr density would be to estimate parr abun-

dance using an explicit sampling (sub)model, as structured in N-

mixture models, for example, Kanno et al. (2015). Other salmo-

nids, for example, brown trout and European grayling (Thymallus

thymallus, Family Salmonidae), were not included in the calculation

of conspecific density because (1) they were not consistently

recorded in salmon surveys, and (2) they were expected to

occupy different niches, as suggested in other studies (e.g. David-

son et al., 2010).

A total of 94,497 individual parr were available for analysis:

61,515 captured at 27 locations on the Frome from 2004 to 2013;

5,797 captured at 12 locations on the Oir from 1994 to 2013; and

27,185 captured at 40 locations on the Scorff from 1993 to 2013.

All sites yielded at least 10 parr in each year. Mean parr lengths

(with standard errors) are presented in Figure 2.

2.3 | Age models

We limited our analysis to age 0 parr (i.e. parr that hatched from

eggs in spring of the same year) for three reasons: (1) age 0 parr

constitute a large majority of total parr numbers in these rivers and

numbers of older parr were expected to be too small for statistical

inference; (2) the effect of environmental conditions on older age >0

parr growth was expected to be weaker than in their first year (Parra

et al., 2012) and (3) age >0 parr might have experienced unusual

growth in their first year that was a factor in their decision to remain

in the river for a second or more years (Baglini�ere & Maisse, 1985).

For the large majority of parr, age was estimated by visual

assessment from length; scales were read only for parr whose age

could not be estimated visually. However, aging parr from length for

an analysis of temporal changes in parr length introduces circularity.

To overcome this, we used mixture models to reclassify—objectively

—parr i as age 0 or age >0 based on its length l. We estimated parr

ages for the Oir and Scorff separately; we did not estimate ages for

Frome parr because overlap in length densities was considered

Length (m
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F IGURE 2 Line plots showing the mean
and standard error (error bars) of
unstandardised juvenile salmon length and
standardised environmental variables
plotted separately for each river over time.
Value on the y-axis is the value of the
variable in the units used in model fitting.
DEN = conspecific density, SMT = summer
maximum temperature, SMF = summer
minimum discharge = SPT spring mean
temperature, TMF total mean discharge,
and WDD = winter degree days
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negligible and age assignment from length reliable (Figures S2 and S3).

The age model was given by

li �
XJ

j¼1

pjNormal lijlj;r2
� �

lj¼1 ¼ aþ b1Maturityþ b2Day of Yearþ b3Siteþ b4Year

lj¼2 ¼ lj¼1 þ Id

(1)

where a is a constant representing the mean length of age 0 parr

adjusted by a coefficient representing the effect of parr maturity

(b1), a coefficient representing the effect of Day of Year (DoY) that

parr i was captured (b2) and coefficients representing the effects of

Site (b3) and Year (b4), pj is the proportion of individuals in age class

j and

pj �0;
XJ

j¼1

pj ¼ 1

d� half-Normalð0; sÞ

We recognised J = 2 components: j = 1 for age 0 parr and j = 2 for

age >0 parr. Note that we assumed a time-invariant pj because we

felt that the annual parr length distributions were similar between

years within rivers (Figure S2). All parameters were constant across

components except for d that measured the difference (d ≥ 0 mm) in

length of age >0 parr compared to age 0 parr as a consequence of

spending an additional year(s) in the river. We multiplied d by an

indicator variable I indicating whether or not the parr was estimated

as age >0 where I e {0, 1} so that I=0d = 0 and I=1d = d.

All age models included all effects because we were striving for

accurate age estimates rather than a parsimonious model. We

included Maturity because mature parr tend to be larger than imma-

ture parr, especially when age 0; Day of Year because parr caught

later in the year could be larger due to their longer growing period;

and Site and Year to account for observed spatio-temporal variations

in parr length distributions (Figures S2 and S3) and because we

included these as random effects in subsequent models. We omitted

interactions because mixture model convergence is often slow and

less likely for complex models (Congdon, 2007).

We used Monte Carlo Markov Chain (MCMC) for inference

because it produces more accurate mixture model parameter esti-

mates than maximum likelihood. It is also, however, prone to label

switching (Jasra, Holmes, & Stephens, 2005). To overcome this, we

created a vector of observed ages that was missing data everywhere

except for the shortest parr at each site, which was fixed at age 0,

and the largest parr anywhere, which was fixed at age >0 (Chung,

Loken, & Schafer, 2004). This assumption was justified because age

>0 parr were present in each river in each year.

Each parr was assigned age 0 with probability p0 calculated as

the marginal probability that the individual was assigned age 0. Parr

assigned age >0 were discarded from subsequent analyses.

2.4 | Length model

We developed a model accounting for differences in sampling proto-

cols and biological factors to investigate the influence of

environmental variables on inter-annual age 0 parr lengths, and

whether their effect was apparent at a local or a regional geographi-

cal scale. The model was of the form

li;s;y �Normal lijls;y;r2
� �

ls;y ¼ aþ hX þ ts þ my
(2)

where h = b1, b2, . . . , bk is a vector of K parameters relating

explanatory variables X = x1, x2, . . . , xk to the mean parr length at

site s in year y, accounting for a Site within River random effect ts

with a zero mean and variance ss from a half-Normal distribution

and a Year within River random effect my with a zero mean and vari-

ance sy from a half-Normal distribution. We considered two types of

explanatory variables: (1) baseline variables describing the effect of

river-specific parr sampling protocols and maturity on individual

length, and (2) environmental variables summarising variables hypoth-

esised to drive the observed changes in age 0 parr lengths (Table 1).

Baseline variables included the effect of River, Maturity and DoY,

and were in the model to explain variations in parr length due to dif-

ferences in river-specific processes and sampling protocols. A Site

within River random effect was included because samples were

taken at the site level rather than the river level. A Year within River

random effect was included to account for inter-annual variability in

age 0 parr length unexplained by the explanatory variables.

We parameterised a saturated model including information from

all three rivers and all environmental variables (Table 1). Environmen-

tal variables entered the model as a linear and/or a nonlinear main

effect, which assumes an identical effect on all three rivers, and as a

linear and/or nonlinear effect in interaction with river, which allows

the strength of the effect to be different for each river (Table 1). The

saturated model was simplified by dropping those effects judged to be

“unimportant.” The importance of each effect was judged by Bayesian

variable selection (see Hooten & Hobbs, 2015). Specifically, we multi-

plied the coefficient representing the effect of the kth environmental

variable bk by a stochastic Bernoulli indicator variable Ik that evaluates

to Ik e {0, 1} so that Ik=1bk ~ bk and Ik=0bk = 0 (Kuo & Mallick, 1998).

For interaction effects, a coefficient representing the effect of the kth

environmental variable on the rth river bk,r was multiplied by a single

stochastic Bernoulli indicator variable Iintk with inclusion probability pk,r

representing the importance of the whole interaction term. The same

approach was taken for the main effects except that the inclusion

probability of the main effect pk was conditional on the probability of

inclusion of the interaction term according to pk ¼ Iintk þ 1� Iintk

� �
0:5.

This ensured that the main effect was retained if the corresponding

interaction term was retained (Ntzoufras, 2002).

A nonlinear effect was represented as a second-order polynomial

and its probability of inclusion was conditional on retention of the

first-order polynomial, that is, the linear effect, in both the main and

interaction effects. We tested all temperature-related variables as

linear and nonlinear effects because several studies have shown a

negative effect of high temperatures (e.g. Crozier et al., 2010;

Table 1). Interactions among explanatory variables were investigated

by calculating the product of the two variables and entering this

new environmental variable into the model as an independent

6 | GREGORY ET AL.



explanatory variable. In this way, their inclusion was not conditional

on the inclusion of their constituent variables. We considered inter-

actions between conspecific density and both spring mean tempera-

ture and total mean discharge because both have been shown to

ameliorate the negative influence of competition for limited

resources at high conspecific density (e.g. Crozier et al., 2010;

Table 1).

The Bayesian variable selection procedure retained coefficients

that were estimated to be substantially more or less than zero, that

is, did not intercept zero, overcoming problems associated with unre-

alistic p values when modelling many cases (Ellison, Gotelli, Inouye,

& Strong, 2014).

2.5 | Model fitting

To compare the effect of environmental variables on age 0 parr

length between rivers, they were standardised within river by sub-

tracting the mean and dividing by 2 standard deviations (Gelman,

2008). This allowed the statistical effect size to be compared

between rivers although the biological effect size could be different,

that is, the actual change in parr length due to a unit change in a

standardised environmental variable could be different between riv-

ers. We took this decision to allow for local adaptation in growth at

the different location (Hutchings, 2011).

To account for any possible collinearity among explanatory vari-

ables, we took the Absolute value of correlation coefficients (|r|)

approach (sensu Dormann et al., 2013) because it avoids spurious

estimation of regression coefficients and thus misinterpretation.

Pearson’s correlations among the standardised environmental vari-

ables (excluding NAO) were all r ≤ |.61| (Dormann et al., 2013;

Table S2). (Indeed, only 1 and 2 pairs of standardised environmental

variables were correlated r ≤ |.61| and r ≤ |.48|, respectively; the

other 8 pairwise comparisons were all (r ≤ |.44|). The correlations

between winter NAO (NAO, average NOAA NAO index from

December to March, www.cpc.ncep.noaa.gov; Hallett et al., 2004)

and all other environmental variables, including conspecific density,

were similar to those for (WDD; Table S3). The correlation between

WDD and NAO was r = .70.

To ensure identifiability, we applied constraints to variables rep-

resented as factors. For age models, we constrained coefficients for

levels representing the first site and the last survey year to zero. For

the length model, we applied a zero-sum constraint to interaction

coefficients so that coefficients for all levels of the interaction term

summed to zero. Coefficient estimates for interaction terms were

therefore the estimated main effect coefficient modified by the esti-

mated river-specific interaction coefficient.

The model coefficients were estimated using jags (version 4.2.0)

called from R (version 3.3.2) using packages base, stats, ggplot2,

stringr, lubridate, rrcovNA, data.table, dclone and rjags. We placed

weakly informative priors on regression coefficients, b ~ Normal

(0, 0.001), and on the model error term, r2 ~ Gamma�1 (0.001,

0.001). Random effect variances took weakly informative half-Nor-

mal priors, s ~ half-Normal (0, 0.01), to improve estimation

behaviour where the random effect variance was close to zero (Gel-

man, 2006). Stochastic Bernoulli indicator variables were given a

vague prior, that is, Bernoulli (0.5), which assumes values 0 and 1

occur with probability .5 (e.g. Tenan, O’Hara, Hendriks, & Tavecchia,

2014). All coefficient estimates are presented with their 95% Baye-

sian credible interval (CrI).

Parameters were estimated from three parallel MCMC chains run

for 105 iterations together with an adaptive period of 203 iterations

and burnin period of 104 iterations (204 iterations for the age mod-

els) that were discarded and parameter values were saved from

every 20th iteration for inferences.

To assess model adequacy, we simulated a replicate dataset in

each MCMC iteration and calculated the discrepancy of the replicate

dataset X from the expected values E given model h as

DðxjhÞ ¼
X

N

Xn � En

and then calculated the probability p (also known as the Bayesian p

value) that the discrepancy from the replicate dataset Xrep exceeded

the discrepancy calculated for the observed data Xobs as

p ¼ Pr½DðXrepjhÞ[DðXobsjhÞ�

A p value of .5 indicates that the model is adequate, that is, the

evidence for a lack of fit to the observed data is weak.

3 | RESULTS

3.1 | Age results

An estimated 86.9% (p0 = 0.869, CrI: 0.860–0.878) of parr captured in

the Oir were age 0 and they were—on average—52.0 mm (CrI: 51.0–

53.0) shorter than age >0 parr. The estimated proportion of age 0 parr

was similar in the Scorff (p0 = 0.878, CrI: 0.874–0.882) and they were

an estimated 49.5 mm (CrI: 49.0–49.9) shorter than age >0 parr. Matu-

rity had a positive effect on mean age 0 and age >0 parr lengths, as

expected, but DoY had a negative (albeit, small) effect on mean age 0

and age >0 parr lengths on the Scorff (but not on the Oir; Table 2a).

Age models correctly classified 99.4% and 94.9% of scale-read

age 0 and age >0 parr from the Oir, respectively (Table S4). (The

misclassification rate was higher for Scorff scale-read parr but are

not reported here because of small sample sizes [Figure S4]). Fur-

thermore, we consider this misclassification rate to be biased high

because scales were read only for parr that could not be aged reli-

ably by visual assessment from length. Length frequency histograms

coloured by model-assigned age reveal good separation for both riv-

ers (Figure S5).

Gelman’s diagnostic statistics suggest that the age model MCMC

chains were stationary and mixed well (Table S5).

3.2 | Length results

On average, parr were longest on the Frome and shortest on the Oir

(Table 2b). Sexually mature parr were longer on all three rivers, but
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the effect of maturity on Scorff parr length was over twice that esti-

mated for the Frome or Oir (Table 2b). The effect of DoY was small

and counter-intuitive: it suggested that parr were shorter each day

after the start of the sampling season (Table 2b).

Only five of the eight environmental variables hypothesised to

influence age 0 parr length changes were retained in the length

model (Figure 3). Conspecific density (DEN) was important and had

a negative influence on age 0 parr lengths on all three rivers sug-

gesting that parr were shorter when there were more competitors

for limited resources and the strength of this effect was river-spe-

cific (Figures 3 and 4a). The interaction between conspecific density

and total mean discharge (DENTMF) was also retained and differed

between rivers. Its effect was negative on all rivers but was gener-

ally weaker than the negative effect of conspecific density (Fig-

ures 3 and 4b). Summer minimum discharge (SMF), spring mean

temperature (SPT), its square (SPT2) and WDD were also all

retained and had a positive effect on mean age 0 parr length: SMF

had a similar positive effect on all three rivers suggesting parr were

longer in years when summer drought was less severe (Figures 3

and 4c); the effect of SPT was best described together with SPT2

as a similar quadratic curve on all three rivers with the strongest

positive effect at intermediate temperatures (Figures 3 and 4d);

WDD had a similar positive effect on all three rivers suggesting

that parr were longer in years when winter was milder (Figures 3

and 4e). The estimated indicator variable values are given in

Table S6 and all had a mean value ≥0.5 and median value of 1.

We repeated our analysis using the winter NAO (NAO) index in

place of WDD; the results were qualitatively and quantitatively

similar to the results with WDD, except that the effect of SPT was

not retained (Figure S6).

Gelman’s diagnostic statistics suggested that the MCMC chains

were stationary and mixed well (Table S7). Neither the Site within

River nor the Year within River random effect estimates diverged

substantially from a theoretical normal distribution, supporting the

assumption that they were normally distributed (Figure S7). Residuals

did not show any systematic patterns for the length model. The

Bayesian p value was .48, indicating that the model fitted the data

well (Figure S8).

4 | DISCUSSION

Our study demonstrates that environmental variables affect biologi-

cal processes at different but predictable geographical scales. Actions

to protect threatened populations from, for example, the impacts of

climate change must therefore be formulated at a scale appropriate

to the biological process being affected (Armstrong et al., 1998). We

predicted and found that temperature-related environmental vari-

ables influence inter-annual changes in wild Atlantic salmon parr

lengths at a regional scale, whereas non-temperature environmental

variables, such as biotic interactions, influence them at a local scale

(Poff & Huryn, 1998). Specifically, we found that conspecific density

and the interaction between conspecific density and total mean dis-

charge (but not summer minimum flow) had “local” effects on parr

lengths specific to each river, whereas WDD and spring mean tem-

perature had “regional” effects that were similar on all three

TABLE 2 (a) Coefficient estimates (and 95% Bayesian credible intervals) for variables included in the age models (used to estimate individual
juvenile salmon ages) and (b) the length model (used to describe inter-annual changes in mean juvenile salmon length and test whether effects
are “regional” or “local,” respectively)

(a)

Variable

Rivera

Oir Scorff

Overall mean 68.02 (66.38, 69.67) 84.69 (83.39, 85.99)

Maturity 5.48 (4.11, 6.89) 10.36 (9.68, 11.07)

DoY 0.02 (�0.05, 0.09) �0.10 (�0.13, �0.07)

Delta 52.00 (50.96, 53.04) 49.47 (49.04, 49.92)

Proportion age 0 86.9 (86.0, 87.8) 87.8 (87.4, 88.2)

(b)

Variable

River

Frome Oir Scorff

Overall mean 92.013 (89.632, 94.406) 79.234 (75.154, 83.371) 87.540 (84.347, 90.865)

Maturity 6.409 (6.050, 6.770) 5.932 (4.175, 7.690) 14.365 (13.654, 15.071)

DoYb �0.032 (�0.043, �0.021)

Site|River variance 0.067 (0.038, 0.109) 0.031 (0.012, 0.064) 0.026 (0.016, 0.039)

Year|River variance 0.136 (0.043, 0.327) 0.047 (0.022, 0.089) 0.032 (0.016, 0.056)

aAge models were not fitted for the Frome.
bDay of Year (DoY) was fitted as a single parameter in the length model because its effect on parr lengths was negligible.
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geographically independent rivers. Furthermore, these effects were

in the same direction as those generally reported from other salmon

populations of the U.K. and France, and throughout their geographi-

cal range (see reviews by Armstrong, Kemp, Kennedy, Ladle, & Mil-

ner, 2003; Milner et al., 2003; Jonsson & Jonsson, 2009; and

Warren, Dunbar, & Smith, 2015).

Winter degree days and spring mean temperature (standardised

within river) had a “regional” positive influence on age 0 parr lengths

that was best represented as a single linear and quadratic main

effect, respectively. We argue that as temperature-related variables,

WDD and spring mean temperature affect physiological processes,

such as individual metabolic rate, so their effects are expected to be

similar between populations inhabiting independent rivers (Atkinson,

1994). Mechanistically, we hypothesise that the effect of WDD

characterises faster development and earlier emergence of parr from

their gravel nests in spring, which affords them a longer growing

period (Jonsson & Jonsson, 2009). Saltveit and Brabrand (2013)

showed that salmon egg development and emergence occurred up

to 40 days earlier in egg boxes situated nearest to warm groundwa-

ter seepages. Moreover, a semi-natural emergence experiment by

Skoglund, Einum, and Robertsen (2011) found that eggs incubated at

a higher temperature produced larger and better surviving parr com-

pared to those incubated at lower ambient temperatures. We note

that a positive effect of WDD suggests that parr are shorter after

harsh, cold winters, perhaps because their development or emer-

gence is retarded, and resources available post-emergence are scarce

due to lower in-river productivity or higher competition (Skoglund,

Einum, Forseth, & Barlaup, 2012). The effect of spring mean temper-

ature was best characterised as a quadratic effect, with a maximum

positive effect at intermediate temperatures, after which its effect

was detrimental. Crozier et al. (2010) reported a quadratic effect of

temperature on juvenile salmon length across 13 populations in

Idaho, U.S.A. although their measure represented summer tempera-

ture. Swansburg, Chaput, Moore, Caissie, and El-Jabi (2002) describe

how the mean length of juvenile salmon in the Northwest and

Southwest Miramichi rivers is negatively related to spring mean tem-

perature, presumably due to an increased metabolic cost of living at

higher temperatures and limiting the energy available to devote to

growth. Note that the infection point in length for these rivers

occurred at a lower than the average river temperature (approxi-

mately �0.25), suggesting that cooler temperatures encouraged bet-

ter growth, presumably through higher productivity.

The effect of winter North Atlantic Oscillation index (NAO; Hal-

lett et al., 2004) on parr length was qualitatively and quantitatively

similar to the effect of WDD, that is, a single coefficient represent-

ing a “regional” effect was retained (Figure S6). We suggest that

NAO is related to WDD and is capturing the same effect on individ-

ual metabolic rates, as supported by their high correlation (Pearson’s

r = .70). Consequently, NAO could be used in the absence of any

direct measure of water temperature (Ottersen et al., 2001). Inter-

estingly, however, spring mean temperature was not retained in the

NAO length model, suggesting that winter NAO captures some of
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the variation in parr length otherwise explained by spring mean tem-

perature. The relationship between WDD, spring mean temperature

and winter NAO merits further investigation.

As predicted, the effects of conspecific density and its interac-

tion with total mean discharge differed in strength (but not direc-

tion) between the three rivers, as indicated by the separation in

their estimated CrIs (Figure 3). The effect of conspecific density

(standardised within river) was negative and differed strongly in

strength on all three rivers. We hypothesise that the difference in

the strength of the effect is due to river-specific influences on parr

condition or density, which could be due to a number of factors

and their interactions. For example, the rivers might differ in their

productivity causing a difference in the amount or replenishment

rate of a limiting resource (Armstrong et al., 2003). Or habitat avail-

able to the spawning stock might differ from one site to another,

within and between rivers, perhaps due to different levels of

exploitation. Although the mechanism(s) remain speculative, the

direction and strength of these conspecific density effects are con-

sistent with other studies. For example, Richard, Cattaneo, and

Rubin (2015) found a strong negative influence of density on

brown trout length at nine locations along the river Boiron,

Switzerland, which differed in strength between locations. The neg-

ative effect of density is supported by mean parr lengths trends

that decrease over time, particularly since 2006 when parr density

was consistently high (Figure 2). Compared to the strength of the

conspecific density effect, its effect in interaction with total mean

discharge was somewhat weaker although it also differed in

strength on all three rivers (Figure 3). This suggests that total mean

discharge affects mean age 0 parr lengths on these rivers indirectly

through its effect on conspecific density (Figure 4b). We speculate

that total mean discharge dampens the negative effect of conspeci-

fic density by delivering more resources, whether available habitat
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or food, to lessen the per capita effect on inter-cohort competition

(e.g. Davidson et al., 2010).

The effect of SMF (standardised within river) was positive but—

contrary to our predictions—its strength was similar on all three riv-

ers. We hypothesised that the effects of discharge would differ

between rivers due to river-specific processes, perhaps related to

geology or human activity (Warren et al., 2015). We speculate that

the effect of SMF was similar between rivers because it represents a

strong but acute effect that might overshadow weaker river-specific

processes. The positive effect of higher SMF (i.e. less severe

droughts) is supported by other studies. For example, Davidson et al.

(2010) and Xu, Letcher, and Nislow (2010) both describe how juve-

nile salmonid growth increased with increasing summer discharge.

Whether this effect is due to discharge directly or indirectly is not

clear. Harvey, Nakamoto, and White (2006) showed that high (com-

pared to low) discharge delivered more invertebrate food that

boosted rainbow trout (Oncorhynchus mykiss, Family Salmonidae)

growth rates. Although the effect of SMF was similar across rivers,

we note that the effect of total mean discharge, albeit in interaction

with conspecific density, was river-specific.

None of the remaining environmental variables (conspecific den-

sity interacting with spring mean temperature, summer maximum

temperature and total mean discharge) were found to influence age

0 parr lengths despite reported findings to the contrary (Table 1).

Possible explanations for this disparity include lack of a strong effect,

as supported by conflicting effects for the same variables outlined in

Table 2 in Jonsson and Jonsson (2009); different variable representa-

tions compared to other studies (e.g. Hallett et al., 2004); and our

statistical methods differed from more conventional methods and

did not rely on p values that are more likely to find “significant,” but

negligible effects by chance or due to a large number of cases (Elli-

son et al., 2014). Alternatively, these differences could be due to

limitations in our own study. We might have omitted potentially

important variables, for example, macrophyte cover and primary pro-

ductivity which could affect the estimated effects of all other vari-

ables in the model. For example, although the effect of DoY was

small (<0.04 mm per day; equivalent to a maximum of 1.1, 0.9 and

0.67 mm during the longest annual survey on the Frome, Oir and

Scorff, respectively), it suggested that parr measured later in the sea-

son are shorter than those measured earlier, which was counter-

intuitive and could be explained by an omitted variable. Also, we

draw conclusions about the spatial scale of effects from just three

geographically independent rivers although we feel that the geo-

graphical area encompassing these rivers is large enough to justify

our conclusions.

Using a large and long-term database of Atlantic salmon parr

length observations, we show that temperature-related environmental

variables affect the body sizes of exothermic animals at a regional

scale, whereas non-temperature environmental variables, such as pre-

cipitation and local human activities, exert their influence at a more

local scale (Poff & Huryn, 1998). This highlights the importance of

integrating local and regional management plans to better manage

ecosystems and their constituent species, particularly for salmon

(Armstrong et al., 1998): if the negative impact of these environmen-

tal variables intensifies under forecast climate change, or the balance

between the environmental variables shifts to drive a shrinking trend

in juvenile salmon parr, as has been observed on these three rivers

(Figures 1 and S9), then the migrating smolt are likely to suffer greater

marine mortality (e.g. Jutila, Jokikokko, & Julkunen, 2006; Otero et al.,

2014), resulting in a net decrease in the number of adult salmon

returning to their natal rivers to spawn (Russell et al., 2012).
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Supporting methods 17 

Study sites and sampling 18 

Rivers included in this study were the Frome (Dorset, UK), Oir (Normandy, France) and Scorff 19 
(Brittany, France). Table S presents basic summary statistics of the river and their catchments. In 20 
addition to these statistics, it is interesting to note the following differences: 21 

 The Frome is a chalk stream river, fed largely from aquifers. The Scorff and Oir have a 22 
harder, less permeable granite bedrock and are largely rain-fed; 23 

 The Scorff discharges into the ocean directly; the Frome discharges into Poole Harbour, the 24 
world’s second largest natural harbour; and the Oir is a tributary of the larger Selune river;  25 

 The Oir has a minor flow when compared with the Frome and Scorff. 26 

Table S1. [Catchment descriptions] A table presenting river and catchment descriptions of the three 27 
rivers included in this study. 28 

  River 

Frome Oir Scorff 

Tidal limit lat. / long. 50.677 / -2.117  NA 47.742 / -3.348  

Catchment area: km2  454  87 480  

Length: km  69.8  19.5 75  

Mean flow: m3 s-1  6.7  0.92 5.0  

Q95: m3 s-1  102  14 97  

Gradient: mean % 2.5 1.1 1.8 

 29 

Atlantic salmon parr were captured by electrofishing from September to October on each river in 30 
each year, when they are large enough to be electro-fished and marked. Electrofishing surveys were 31 
part of long-term monitoring programmes on each river and followed consistent protocols with 32 
standardised effort. A brief description of each sampling protocol is outlined below: 33 
 34 

Frome 35 

Throughout the sampling period, fish capture was carried out using pulsed DC electric fishing. Two 36 

types of output waveforms were used, a half-wave rectified waveform and a square-wave 37 

waveform. Both were fished at 50 Hz and approximately 200 volts and the square-waveform was 38 

fished at 25-30% duty cycle. Fishing was normally carried out using a single anode (380 mm diameter 39 

and a 3000 mm cathode) but on occasions twin anode fishing was used. Two nets were used to 40 

capture salmon: one primary net held by the operator and one “back up” net. Specific conductivity 41 

of the river Frome is around 460 Scm-1, being a groundwater fed river this conductivity shows little 42 

variation (±50 Scm-1). 43 

Oir & Scorff 44 

Throughout the study, a single electro-fishing unit was used (Martin Pêcheur, DREAM Electronique) 45 

delivering pulsed DC square-wave waveform fished at 400 Hz frequency, 200-350 volts and a 4-10% 46 

duty cycle. The anode diameter was 250 mm. Three nets were used to capture salmon: one of 600 47 

mm width and one of 400 mm width used to catch salmon within the 4-5 m zone electified by the 48 

anode, and one of 250 mm width used to catch salmon missed by those nets.  Surveys were 5 mins 49 

effective fishing time, i.e., 5 mins with the anode in the water and electrified. 50 
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River water temperature and discharge data imputation 51 

River water temperature and discharge data had missing values. To overcome this limitation, we 52 
imputed missing values using measured and interpolated air temperature and precipitation records 53 
(see article methods). 54 

Here, we present the details of a small experiment we did to help decide the best imputation 55 
algorithm to use. 56 

Based on this experiment, we decided to use impSeqRob. 57 

To account for the possibility that the missing river water temperature and flow values might not be 58 
"Missing At Random" (MAR) but are “Missing Not At Random” (MNAR), we repeat an experiment 59 

with MAR and MNAR data using the impSeqRob and irmi algorithms. 60 

## bootstrap function 61 
impute.boot <- function(dat, miss.col = 'mean', n, n.missing = 100, missingness = 62 
'MAR'){ 63 
   64 
  ## check missingness 65 
  if(!missingness %in% c('MAR', 'MNAR')) stop('missingness must be MAR or MNAR') 66 
   67 
  ## back up missing col data 68 
  d <- dat[, miss.col] 69 
   70 
  ## holding list 71 
  df.irmi <- df.impSeqRob <- list() 72 
   73 
  ## repeat in loop 74 
  for(i in 1:n){ 75 
     76 
    ## reset dat 77 
    dat[, miss.col] <- d 78 
     79 
    ## add NAs to dataset 80 
    if(missingness == 'MAR'){ 81 
      nas <- sample(x = 1:nrow(dat), size = n.missing, replace = FALSE) 82 
      dat[, miss.col][nas] <- NA 83 
    }else{ 84 
      ff <- factor(sort(sample(1:5, n.missing, replace = TRUE, prob = c(0.1, 0.1, 85 
0.5, 0.2, 0.1)))) 86 
      splt <- split(1:n.missing, f = ff) 87 
      nas.strt <- sample(x = 1:nrow(dat), size = 5, replace = TRUE) 88 
      nas <- unlist(lapply(1:length(nas.strt), function(v) nas.strt[v] + 89 
1:length(splt[[v]]))) 90 
      dat[, miss.col][nas] <- NA 91 
    } 92 
     93 
    ## fit models 94 
    # irmi 95 
    sink('NUL'); foo <- irmi(dat, trace = FALSE); sink() 96 
    # impSeqRob 97 
    fii <- impSeqRob(dat) 98 
    fii <- data.frame(fii$x) 99 
    fii$Date <- dat$Date 100 
     101 
    ## add imputation indicator 102 
    foo$Imp <- fii$Imp <- 0 103 
    foo[nas, 'Imp'] <- 1 104 
    fii[nas, 'Imp'] <- 1 105 
     106 
    ## add residuals 107 
    foo$Res <- foo[, miss.col] - d 108 
    fii$Res <- fii[, miss.col] - d 109 
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     110 
    ## add to holding lists 111 
    df.irmi[[i]] <- foo 112 
    df.impSeqRob[[i]] <- fii 113 
     114 
    } 115 
   116 
  ## aggregate dfs 117 
  df.irmi <- do.call('rbind', df.irmi) 118 
  df.impSeqRob <- do.call('rbind', df.impSeqRob) 119 
   120 
  ## add index of iterations 121 
  df.irmi$Iter <- rep(1:n, each = nrow(dat)) 122 
  df.impSeqRob$Iter <- rep(1:n, each = nrow(dat)) 123 
   124 
  ## return imputed data 125 
  return(list('irmi' = df.irmi, 'impSeqRob' = df.impSeqRob)) 126 
   127 
  } 128 
 129 
## use the EObs mean, minimum and maximum temperatures 130 
foo.df <- df[, c('Date', 'dailymeantemperature', 'dailymaximumtemperature', 131 
'dailyminimumtemperature')] 132 
colnames(foo.df)[2:4] <- c('mean', 'max', 'min') 133 
head(foo.df) 134 
##             Date mean   max  min 135 
## 18629 2001-01-01 6.79 10.86 2.09 136 
## 18630 2001-01-02 9.10 10.22 7.51 137 
## 18631 2001-01-03 5.97  9.42 1.97 138 
## 18632 2001-01-04 6.94  7.61 4.48 139 
## 18633 2001-01-05 6.02  8.76 4.94 140 
## 18634 2001-01-06 5.43  7.64 1.52 141 
 142 
## do MAR analysis 143 
mar.res <- impute.boot(foo.df, miss.col = 'mean', n = 10, n.missing = 100, 144 
missingness = 'MAR') 145 
 146 
## make data.frame 147 
mar.df <- do.call('rbind', mar.res) 148 
mar.df$Method <- factor(gsub('\\.[0-9]*$', '', rownames(mar.df))) 149 
 150 
## print sums of squares by method for each iteration and overall 151 
ss.mar.iter <- aggregate(Res ~ Method + Iter, mar.df, function(v) sum(v^2)) 152 
ss.mar.all <- aggregate(Res ~ Method, mar.df, function(v) sum(v^2)) 153 
print(ss.mar.iter) 154 
##       Method Iter   Res 155 
## 1  impSeqRob    1 25.18 156 
## 2       irmi    1 48.19 157 
## 3  impSeqRob    2 28.62 158 
## 4       irmi    2 64.07 159 
## 5  impSeqRob    3 40.38 160 
## 6       irmi    3 75.27 161 
## 7  impSeqRob    4 25.82 162 
## 8       irmi    4 58.82 163 
## 9  impSeqRob    5 34.17 164 
## 10      irmi    5 53.79 165 
## 11 impSeqRob    6 23.83 166 
## 12      irmi    6 49.61 167 
## 13 impSeqRob    7 28.97 168 
## 14      irmi    7 61.33 169 
## 15 impSeqRob    8 17.13 170 
## 16      irmi    8 43.77 171 
## 17 impSeqRob    9 17.67 172 
## 18      irmi    9 52.07 173 
## 19 impSeqRob   10 21.89 174 
## 20      irmi   10 51.06 175 
print(ss.mar.all) 176 



5 
 

##      Method   Res 177 
## 1 impSeqRob 263.7 178 
## 2      irmi 558.0 179 
 180 
## do MNAR analysis 181 
mnar.res <- impute.boot(foo.df, miss.col = 'mean', n = 10, n.missing = 100, 182 
missingness = 'MNAR') 183 
 184 
## make data.frame 185 
mnar.df <- do.call('rbind', mnar.res) 186 
mnar.df$Method <- factor(gsub('\\.[0-9]*$', '', rownames(mnar.df))) 187 
 188 
## print sums of squares by method for each iteration and overall 189 
ss.mnar.iter <- aggregate(Res ~ Method + Iter, mnar.df, function(v) sum(v^2)) 190 
ss.mnar.all <- aggregate(Res ~ Method, mnar.df, function(v) sum(v^2)) 191 
print(ss.mnar.iter) 192 
##       Method Iter    Res 193 
## 1  impSeqRob    1 24.945 194 
## 2       irmi    1 52.964 195 
## 3  impSeqRob    2  5.036 196 
## 4       irmi    2 31.049 197 
## 5  impSeqRob    3 26.587 198 
## 6       irmi    3 53.975 199 
## 7  impSeqRob    4  7.337 200 
## 8       irmi    4 40.687 201 
## 9  impSeqRob    5 13.313 202 
## 10      irmi    5 46.326 203 
## 11 impSeqRob    6 19.088 204 
## 12      irmi    6 52.490 205 
## 13 impSeqRob    7  6.240 206 
## 14      irmi    7 29.475 207 
## 15 impSeqRob    8  8.222 208 
## 16      irmi    8 30.158 209 
## 17 impSeqRob    9 42.835 210 
## 18      irmi    9 75.828 211 
## 19 impSeqRob   10  9.420 212 
## 20      irmi   10 39.248 213 
print(ss.mnar.all) 214 
##      Method   Res 215 
## 1 impSeqRob 163.0 216 
## 2      irmi 452.2 217 
 218 
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 219 

(a)       (b) 220 

Figure S1. [Imputation residual plots] Residuals (imputed – actual value) for each of 10 bootstrap 221 
datasets with values (a) Missing at Random (MAR) and (b) Missing Not at Random (MNAR). 222 

 223 
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Age models 224 

(a)  225 

(b)  226 

(c)  227 

Figure S2. [Juvenile salmon length density plots by year] Density plots showing the overlap in parr 228 
lengths in each year on the rivers (a) Frome, (b) Oir and (c) Scorff. 229 
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(a)  230 

(b)  231 

(c)  232 

Figure S3. [Juvenile salmon length density plots by site] Density plots showing the overlap in parr 233 
lengths in each site on the rivers (a) Frome, (b) Oir and (c) Scorff. 234 

 235 
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Length model 236 

Explanatory variable correlation matrix 237 

Table S2. [Explanatory variable correlation matrix] A correlation matrix between the environmental 238 
explanatory variables. Abbreviations are: DEN, conspecific density; WDD, winter degree days; SPT, 239 
spring mean temperature; SMT, summer maximum temperature; TMF, total mean discharge; SMF, 240 
summer minimum discharge; DENSPT, conspecific density and spring mean temperature product, 241 
and DENTMF, conspecific density and total mean discharge product.  242 

                DEN     WDD     SPT     SMT     TMF     SMF  DENSPT  DENTMF 
DEN           1.000  -0.102   0.102   0.155  -0.232   0.021   0.120  -0.035 
WDD          -0.102   1.000   0.167  -0.165   0.480   0.206   0.187   0.035 
SPT           0.102   0.167   1.000   0.601  -0.277  -0.060   0.444   0.038 
SMT           0.155  -0.165   0.601   1.000  -0.245  -0.203   0.281  -0.083 
TMF          -0.232   0.480  -0.277  -0.245   1.000   0.324   0.039   0.073 
SMF           0.021   0.206  -0.060  -0.203   0.324   1.000  -0.048   0.232 
DENSPT        0.120   0.187   0.444   0.281   0.039  -0.048   1.000  -0.373 
DENTMF       -0.035   0.035   0.038  -0.083   0.073   0.232  -0.373   1.000 

 

 

 243 
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NAO correlation matrix 244 

Table S3. [Winter North Atlantic Oscillation index correlation matrix] A correlation matrix showing 245 
correlation between Winter North Atlantic Oscillation index (WNTNAO) and the other environmental 246 
variables. Abbreviations are: DEN, conspecific density; WDD, winter degree days; SPT, spring mean 247 
temperature; SMT, summer maximum temperature; TMF, total mean discharge; SMF, summer 248 
minimum discharge; DENSPT, conspecific density and spring mean temperature product, and 249 
DENTMF, conspecific density and total mean discharge product. 250 

               DEN       WDD        SPT        SMT       TMF  251 
WDD     -0.1023995 1.0000000 0.16726624 -0.1646876 0.4796696  252 
WNTNAO  -0.1358511 0.7024501 0.06490442 -0.1579133 0.5896265  253 
 254 
               SMF    DENSPT      DENTMF    WNTNAO 255 
WDD      0.2063852 0.1866084  0.03475113 0.7024501 256 
WNTNAO   0.2743359 0.1589354 -0.01795812 1.0000000 257 
 258 
 259 
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Supporting results 260 

Age results 261 

Table S4. [Age model misclassification rates] Validation of the parr aging model predictions 262 
(misclassified ages are in italics). Note that the Scorff misclassification rates are considered 263 
unreliable because of possible scale-read aging errors. 264 

River Scale-read age Model-assigned age Misclassification 
rate (%) 0 1 

Oir 0 672 4 0.59 

1 17 316 5.11 

Scorff 0 217 23 9.58 

1 26 100 20.64 

 265 

Table S5. [Age model convergence statistics] Gelman statistic estimates for all estimated parameters 266 
in the age models. Note: an estimate of 1 suggested converged, stationary and well mixing chains. 267 

Estimate River Point estimate Upper Confidence Interval 

delta Oir 1.00 1.00 

 Scorff 1.00 1.00 

deviance Oir 1.00 1.00 

 Scorff 1.00 1.00 

alpha Oir 1.00 1.00 

 Scorff 1.00 1.00 

beta_d Oir 1.00 1.00 

 Scorff 1.00 1.00 

beta_p Oir 1.00 1.00 

 Scorff 1.00 1.00 

beta_s Oir all 1.00 all 1.00 

 Scorff all 1.00 all 1.00 

beta_y Oir all 1.00 all 1.00 

 Scorff all 1.00 all 1.00 

pAges[1] Oir 1.00 1.00 

 Scorff 1.00 1.00 

pAges[2] Oir 1.00 1.00 

 Scorff 1.00 1.00 

sigma Oir 1.00 1.00 

 Scorff 1.00 1.00 

tau Oir 1.00 1.00 

 Scorff 1.00 1.00 

 268 
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 269 

Figure S4. [Boxplots of scale-aged juvenile salmon lengths] Lengths of scale-read aged non-270 
precocious (0) and precocious (1) parr for the rivers Oir (n = 3214) and Scorff (n = 381). Note that (1) 271 
the Scorff plot is based on approximately 10% of the amount of data as the Oir plot, and (2) there 272 
were only 3 and 28 age 0 and age >0 parr judged to be precocious in the Scorff sample. Based on the 273 
small sample sizes the Scorff scale-read parr ages were not used to assess model accuracy. 274 
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(a)  275 

(b)  276 

Figure S5. [Juvenile salmon length histograms by estimated age] Histograms for the (a) Oir and (b) 277 
Scorff showing separation between the lengths of model-estimated freshwater age (AgeFW) age 0 278 
and age >0 parr. 279 

 280 
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Length results 281 

Table S6. [Length model indicator variable estimates] A table presenting the mean and standard 282 
deviation, together with the 2.5, 25, 50, 75 and 97.5% quantiles of the estimates for each indicator 283 
variable retained in the length model. All other environmental variables had a mean estimate <0.5 284 
and 50% quantile estimate of 0 and were dropped from the final model. 285 

 Quantiles 

Indicator variable Mean Standard Deviation 2.5% 25% 50% 75% 97.5% 

𝐼𝑑𝑒𝑛 1.00 0.00 1 1 1 1 1 

𝐼𝑑𝑒𝑛×𝑟𝑖𝑣𝑒𝑟  1.00 0.00 1 1 1 1 1 

𝐼𝑑𝑒𝑛×𝑡𝑚𝑓 1.00 0.00 1 1 1 1 1 

𝐼𝑑𝑒𝑛×𝑡𝑚𝑓×𝑟𝑖𝑣𝑒𝑟  1.00 0.00 1 1 1 1 1 

𝐼𝑠𝑚𝑓  0.92 0.27 0 1 1 1 1 

𝐼𝑠𝑝𝑡 0.77 0.42 0 1 1 1 1 

𝐼𝑠𝑝𝑡2 0.71 0.45 0 0 1 1 1 

𝐼𝑤𝑑𝑑  1.00 0.00 1 1 1 1 1 

 286 

Table S7. [Length model convergence statistics] Gelman statistic estimates for all estimated 287 
parameters in the age models. Note: an estimate of 1 suggested converged, stationary and well 288 
mixing chains. 289 

Estimate Point estimate Upper Confidence Interval 

a 1.01 1.02 

b_den 1.01 1.04 

b_denr[1] 1.02 1.08 

b_denr[2] 1.02 1.06 

b_denr[3] 1.00 1.01 

b_dentmf 1.00 1.01 

b_dentmfr[1] 1.01 1.05 

b_dentmfr[2] 1.01 1.02 

b_dentmfr[3] 1.01 1.01 

b_smf 1.01 1.01 

b_spt 1.12 1.40 

b_sptq 1.15 1.42 

b_wdd 1.01 1.01 

 290 
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 291 

Figure S6. [NAO coefficients] Caterpillar plot showing the coefficient estimates (and 95% Bayesian 292 
credible intervals) for each of the environmental variables included in the length model with a 293 
measure of winter North Atlantic Oscillation (NAO) in place of Winter Degree Days (WDD). Filled 294 
circles with solid bars identify coefficients retained in the model; hollow circles with dashed bars 295 
identify coefficients that were dropped. Where coefficient estimates are the same, the river-296 
interaction effect has been dropped suggesting that the effect of that environmental variable can be 297 
represented as a single coefficient applicable to all three rivers, i.e., its effect is “regional” rather 298 
than “local” (see text). Abbreviations are: DEN, conspecific density; DENSPT, conspecific density x 299 
spring mean temperature; DENTMF, conspecific density x total mean discharge; SMF, summer 300 
minimum discharge, SMT, summer maximum temperature; SMT2, summer maximum temperature 301 
^2; SPT spring mean temperature; SPT2 spring mean temperature ^2; TMF total mean discharge; 302 
NAO, winter NAO; and NAO2, winter NAO ^2. 303 

 304 

 305 
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 (a)  306 

(b)  307 

Figure S7. [Random effect QQ-plots] Quantile-quantile plots showing that the (a) Site within River 308 
and (b) Year within River random effects empirical distributions did not differ substantially from a 309 
theoretical normal distribution for the length model. Note: several effects are equal to 0 and have 310 
no variance because they represent sites or years that were not surveyed in some rivers. 311 

 312 
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 313 

Figure S8. [Length model adequacy plot] Plot showing the performance of the length model for 314 
replicate datasets. The Bayesian P value was 0.48, indicating that this model provided an adequate 315 
fit to the data.  316 

 317 
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 318 

Figure S9. [Year random effect plot] Plot showing the year-specific random effect estimates plotted 319 
by year for the Frome (Dorset, UK), Oir (Normandy, France) and Scorff (Brittany, France). Note: there 320 
appears to be a residual declining trend in all three rivers that was not explained by the 321 
environmental explanatory variables used in this study.  322 

 323 
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(a)  324 

(b)  325 

(c)  326 

Figure S10. [Site random effect maps] Maps showing the relative size of site-specific random effect 327 
estimates for the (a) Frome (Dorset, UK), (b) Oir (Normandy, France) and (c) Scorff (Brittany, France). 328 
Note: there does not appear to be any relationship to distance from tidal limit.  329 

 330 
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Annotated JAGS code for the Age model  331 

{ 332 
 333 
 ## notes 334 
 ## parameter code in parentheses, e.g., B_1, correspond with the explanatory variable in 335 

## eqn 1. 336 
## pAges is written as pi in eqn 1 337 
 338 
## intercept 339 
alpha ~ dnorm(0, 0.001) 340 
 341 
## precocious fixed effect (B_1) 342 
beta_p ~ dnorm(0, 0.001) 343 
 344 
## day of Year fixed effect (B_2) 345 
l_beta_d ~ dnorm(0, 0.001) 346 
 347 
## site fixed effect (B_3) 348 
beta_s[1] <- 0 349 
for(i in 2:n_sites){ 350 

l_beta_s[i] ~ dnorm(0, 0.001) 351 
} 352 
 353 
## year fixed effect (B_4) 354 
for(i in 1:(n_years - 1)){ 355 

l_beta_y[i] ~ dnorm(0, 0.001) 356 
} 357 
l_beta_y[n_years] <- 0 358 
 359 
### error model 360 
## tau 361 
tau ~ dgamma(0.001, 0.001) 362 
sigma <- 1 / sqrt(tau) 363 
 364 
## delta 365 
delta ~ dnorm(0, 0.001);T(0, ) 366 
 367 
## proportional age split 368 
pAges[1:2] ~ ddirch(Ps[]) 369 
 370 
## model fitting 371 
for(i in 1:n_fishes){ 372 
 373 

## length error estimate 374 
Length_mm[i] ~ dnorm(mu[i], tau) 375 
 376 
## average length estimate 377 
mu_prime[i] <- l_alpha + (l_beta_p * Precocious[i]) + (l_beta_d * DoY[i]) + 378 

l_beta_s[Site[i]] + l_beta_y[Year[i]]\nmu[i] <- mu_prime[i] + ((Age[i] - 1) * delta) 379 
 380 
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# Estimate age 381 
Age[i] ~ dcat(pAges[]) 382 
 383 
} # end of fish loop 384 

 385 
} 386 
 387 
 388 
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Annotated JAGS code for the Length model  389 

{ 390 
 391 
 ## notes 392 
 ## ##### 393 
 ## - parameter names correspond with the environmental explanatory variable 394 

## abbreviations used in the main text. For example, “b_den” is the coefficient  395 
## capturing the strength of the effect of conspecific density or DEN on mean age 0  396 
## parr lengths. Parameters ending with “_p” or “_p_tmp” are related to indicator  397 
## variables. Parameters ending with “r” are river interactions, those ending with “q”  398 
## are quadratic terms and those ending with “rq” are quadratic terms in interaction  399 
## with river. 400 

 ## - main effects are given the weakly informative prior dnorm(0, 0.001) 401 
 ## - variance terms are given the weakly informative prior dgamma(1, 0.001) 402 

## - terms are included conditional upon other terms, according to the following rules: 403 
## + a main effect is included with probability 1.0 if the river interaction effect is  404 
##   included, otherwise it is included with probability 0.5 405 
## + a quadratic main term is included with probability 0.5 if the linear main term is  406 
##  included, otherwise it is not included 407 
## + a quadratic river interaction term is included with probability 0.5 if the linear  408 
##  river interaction term is included, otherwise it is not included 409 

 ## - model adequacy is measured using simulated datasets to calculate the Bayesian P value 410 
 411 

  ## intercept 412 
  a ~ dnorm(0, 0.01) 413 
 414 
  ## river main effect 415 
  for (r in 1:n_rivers) { 416 
    b_r[r] ~ dnorm(0, tau_b_r) 417 
  } 418 
  tau_b_r ~ dgamma(1, 0.01) 419 
 420 
  ## precocious main effect and precocious * river interaction effect 421 
  b_precocious ~ dnorm(0, 0.01) 422 
  for(r in 1:(n_rivers - 1)){ 423 
    b_precociousr[r] ~ dnorm(0, 0.01) 424 
  } 425 
  b_precociousr[n_rivers] <- -sum(b_precociousr[1:(n_rivers - 1)]) 426 
 427 
  ## doy main effect 428 
  b_doy ~ dnorm(0, 0.01) 429 
 430 
  ## den effects 431 
  ### den linear main effect conditional on linear interaction term 432 
  b_den_tmp ~ dnorm(0, 0.01) 433 
  b_den_p_tmp <- b_denr_p + ((1 - b_denr_p) * 0.5) 434 
  b_den_p ~ dbern(b_den_p_tmp) 435 
  b_den <- b_den_p * b_den_tmp 436 
  ### den * river interaction term 437 
  for(r in 1:n_rivers){ 438 
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    b_denr_p_tmp[r] ~ dbern(0.5) 439 
  } 440 
  b_denr_p ~ dbern(sum(b_denr_p_tmp) / n_rivers) 441 
  for(r in 1:(n_rivers - 1)){ 442 
    b_denr_tmp[r] ~ dnorm(0, 0.01) 443 
  } 444 
  b_denr_tmp[n_rivers] <- -sum(b_denr_tmp[1:(n_rivers - 1)]) 445 
  for(r in 1:n_rivers){ 446 
    b_denr[r] <- b_denr_p * b_denr_tmp[r] 447 
  } 448 
 449 
  ## wdd effects 450 
  ### wdd linear main effect conditional on linear interaction term 451 
  b_wdd_tmp ~ dnorm(0, 0.01) 452 
  b_wdd_p_tmp <- b_wddr_p + ((1 - b_wddr_p) * 0.5) 453 
  b_wdd_p ~ dbern(b_wdd_p_tmp) 454 
  b_wdd <- b_wdd_p * b_wdd_tmp 455 
  ### wdd quadratic main effect conditional on linear main effect term 456 
  b_wddq_tmp ~ dnorm(0, 0.01) 457 
  b_wddq_p_tmp <- b_wdd_p * 0.5 458 
  b_wddq_p ~ dbern(b_wddq_p_tmp) 459 
  b_wddq <- b_wddq_p * b_wddq_tmp 460 
  ### wdd * river interaction term 461 
  for(r in 1:n_rivers){ 462 
    b_wddr_p_tmp[r] ~ dbern(0.5) 463 
  } 464 
  b_wddr_p ~ dbern(sum(b_wddr_p_tmp) / n_rivers) 465 
  for(r in 1:(n_rivers - 1)){ 466 
    b_wddr_tmp[r] ~ dnorm(0, 0.01) 467 
  } 468 
  b_wddr_tmp[n_rivers] <- -sum(b_wddr_tmp[1:(n_rivers - 1)]) 469 
  for(r in 1:n_rivers){ 470 
    b_wddr[r] <- b_wddr_p * b_wddr_tmp[r] 471 
  } 472 
  ### wdd * river interaction term conditional on linear interaction term 473 
  p_wddrq <- b_wddr_p * 0.5 474 
  for(r in 1:n_rivers){ 475 
    b_wddrq_p_tmp[r] ~ dbern(p_wddrq) 476 
  } 477 
  b_wddrq_p ~ dbern(sum(b_wddrq_p_tmp) / n_rivers) 478 
  for(r in 1:(n_rivers - 1)){ 479 
    b_wddrq_tmp[r] ~ dnorm(0, 0.01) 480 
  } 481 
  b_wddrq_tmp[n_rivers] <- -sum(b_wddrq_tmp[1:(n_rivers - 1)]) 482 
  for(r in 1:n_rivers){ 483 
    b_wddrq[r] <- b_wddrq_p * b_wddrq_tmp[r] 484 
  } 485 
 486 
  ## spt effects 487 
  ### spt linear main effect conditional on linear interaction term 488 
  b_spt_tmp ~ dnorm(0, 0.01) 489 
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  b_spt_p_tmp <- b_sptr_p + ((1 - b_sptr_p) * 0.5) 490 
  b_spt_p ~ dbern(b_spt_p_tmp) 491 
  b_spt <- b_spt_p * b_spt_tmp 492 
  ### spt quadratic main effect conditional on linear main effect term 493 
  b_sptq_tmp ~ dnorm(0, 0.01) 494 
  b_sptq_p_tmp <- b_spt_p * 0.5 495 
  b_sptq_p ~ dbern(b_sptq_p_tmp) 496 
  b_sptq <- b_sptq_p * b_sptq_tmp 497 
  ### spt * river interaction term 498 
  for(r in 1:n_rivers){ 499 
    b_sptr_p_tmp[r] ~ dbern(0.5) 500 
  } 501 
  b_sptr_p ~ dbern(sum(b_sptr_p_tmp) / n_rivers) 502 
  for(r in 1:(n_rivers - 1)){ 503 
    b_sptr_tmp[r] ~ dnorm(0, 0.01) 504 
  } 505 
  b_sptr_tmp[n_rivers] <- -sum(b_sptr_tmp[1:(n_rivers - 1)]) 506 
  for(r in 1:n_rivers){ 507 
    b_sptr[r] <- b_sptr_p * b_sptr_tmp[r] 508 
  } 509 
  ### spt * river interaction term conditional on linear interaction term 510 
  p_sptrq <- b_sptr_p * 0.5 511 
  for(r in 1:n_rivers){ 512 
    b_sptrq_p_tmp[r] ~ dbern(p_sptrq) 513 
  } 514 
  b_sptrq_p ~ dbern(sum(b_sptrq_p_tmp) / n_rivers) 515 
  for(r in 1:(n_rivers - 1)){ 516 
    b_sptrq_tmp[r] ~ dnorm(0, 0.01) 517 
  } 518 
  b_sptrq_tmp[n_rivers] <- -sum(b_sptrq_tmp[1:(n_rivers - 1)]) 519 
  for(r in 1:n_rivers){ 520 
    b_sptrq[r] <- b_sptrq_p * b_sptrq_tmp[r] 521 
  } 522 
 523 
  ## smt effects 524 
  ### smt linear main effect conditional on linear interaction term 525 
  b_smt_tmp ~ dnorm(0, 0.01) 526 
  b_smt_p_tmp <- b_smtr_p + ((1 - b_smtr_p) * 0.5) 527 
  b_smt_p ~ dbern(b_smt_p_tmp) 528 
  b_smt <- b_smt_p * b_smt_tmp 529 
  ### smt quadratic main effect conditional on linear main effect term 530 
  b_smtq_tmp ~ dnorm(0, 0.01) 531 
  b_smtq_p_tmp <- b_smt_p * 0.5 532 
  b_smtq_p ~ dbern(b_smtq_p_tmp) 533 
  b_smtq <- b_smtq_p * b_smtq_tmp 534 
  ### smt * river interaction term 535 
  for(r in 1:n_rivers){ 536 
    b_smtr_p_tmp[r] ~ dbern(0.5) 537 
  } 538 
  b_smtr_p ~ dbern(sum(b_smtr_p_tmp) / n_rivers) 539 
  for(r in 1:(n_rivers - 1)){ 540 
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    b_smtr_tmp[r] ~ dnorm(0, 0.01) 541 
  } 542 
  b_smtr_tmp[n_rivers] <- -sum(b_smtr_tmp[1:(n_rivers - 1)]) 543 
  for(r in 1:n_rivers){ 544 
    b_smtr[r] <- b_smtr_p * b_smtr_tmp[r] 545 
  } 546 
  ### smt * river interaction term conditional on linear interaction term 547 
  p_smtrq <- b_smtr_p * 0.5 548 
  for(r in 1:n_rivers){ 549 
    b_smtrq_p_tmp[r] ~ dbern(p_smtrq) 550 
  } 551 
  b_smtrq_p ~ dbern(sum(b_smtrq_p_tmp) / n_rivers) 552 
  for(r in 1:(n_rivers - 1)){ 553 
    b_smtrq_tmp[r] ~ dnorm(0, 0.01) 554 
  } 555 
  b_smtrq_tmp[n_rivers] <- -sum(b_smtrq_tmp[1:(n_rivers - 1)]) 556 
  for(r in 1:n_rivers){ 557 
    b_smtrq[r] <- b_smtrq_p * b_smtrq_tmp[r] 558 
  } 559 
 560 
  ## tmf effects 561 
  ### tmf linear main effect conditional on linear interaction term 562 
  b_tmf_tmp ~ dnorm(0, 0.01) 563 
  b_tmf_p_tmp <- b_tmfr_p + ((1 - b_tmfr_p) * 0.5) 564 
  b_tmf_p ~ dbern(b_tmf_p_tmp) 565 
  b_tmf <- b_tmf_p * b_tmf_tmp 566 
  ### tmf * river interaction term 567 
  for(r in 1:n_rivers){ 568 
    b_tmfr_p_tmp[r] ~ dbern(0.5) 569 
  } 570 
  b_tmfr_p ~ dbern(sum(b_tmfr_p_tmp) / n_rivers) 571 
  for(r in 1:(n_rivers - 1)){ 572 
    b_tmfr_tmp[r] ~ dnorm(0, 0.01) 573 
  } 574 
  b_tmfr_tmp[n_rivers] <- -sum(b_tmfr_tmp[1:(n_rivers - 1)]) 575 
  for(r in 1:n_rivers){ 576 
    b_tmfr[r] <- b_tmfr_p * b_tmfr_tmp[r] 577 
  } 578 
 579 
  ## smf effects 580 
  ### smf linear main effect conditional on linear interaction term 581 
  b_smf_tmp ~ dnorm(0, 0.01) 582 
  b_smf_p_tmp <- b_smfr_p + ((1 - b_smfr_p) * 0.5) 583 
  b_smf_p ~ dbern(b_smf_p_tmp) 584 
  b_smf <- b_smf_p * b_smf_tmp 585 
  ### smf * river interaction term 586 
  for(r in 1:n_rivers){ 587 
    b_smfr_p_tmp[r] ~ dbern(0.5) 588 
  } 589 
  b_smfr_p ~ dbern(sum(b_smfr_p_tmp) / n_rivers) 590 
  for(r in 1:(n_rivers - 1)){ 591 
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    b_smfr_tmp[r] ~ dnorm(0, 0.01) 592 
  } 593 
  b_smfr_tmp[n_rivers] <- -sum(b_smfr_tmp[1:(n_rivers - 1)]) 594 
  for(r in 1:n_rivers){ 595 
    b_smfr[r] <- b_smfr_p * b_smfr_tmp[r] 596 
  } 597 
 598 
  ## den * spt interaction effects 599 
  ### denspt linear main effect conditional on linear interaction term 600 
  b_denspt_tmp ~ dnorm(0, 0.01) 601 
  b_denspt_p_tmp <- b_densptr_p + ((1 - b_densptr_p) * 0.5) 602 
  b_denspt_p ~ dbern(b_denspt_p_tmp) 603 
  b_denspt <- b_denspt_p * b_denspt_tmp 604 
  ### denspt * river interaction term 605 
  for(r in 1:n_rivers){ 606 
    b_densptr_p_tmp[r] ~ dbern(0.5) 607 
  } 608 
  b_densptr_p ~ dbern(sum(b_densptr_p_tmp) / n_rivers) 609 
  for(r in 1:(n_rivers - 1)){ 610 
    b_densptr_tmp[r] ~ dnorm(0, 0.01) 611 
  } 612 
  b_densptr_tmp[n_rivers] <- -sum(b_densptr_tmp[1:(n_rivers - 1)]) 613 
  for(r in 1:n_rivers){ 614 
    b_densptr[r] <- b_densptr_p * b_densptr_tmp[r] 615 
  } 616 
 617 
  ## den * tmf interaction effects 618 
  ### dentmf linear main effect conditional on linear interaction term 619 
  b_dentmf_tmp ~ dnorm(0, 0.01) 620 
  b_dentmf_p_tmp <- b_dentmfr_p + ((1 - b_dentmfr_p) * 0.5) 621 
  b_dentmf_p ~ dbern(b_dentmf_p_tmp) 622 
  b_dentmf <- b_dentmf_p * b_dentmf_tmp 623 
  ### dentmf * river interaction term 624 
  for(r in 1:n_rivers){ 625 
    b_dentmfr_p_tmp[r] ~ dbern(0.5) 626 
  } 627 
  b_dentmfr_p ~ dbern(sum(b_dentmfr_p_tmp) / n_rivers) 628 
  for(r in 1:(n_rivers - 1)){ 629 
    b_dentmfr_tmp[r] ~ dnorm(0, 0.01) 630 
  } 631 
  b_dentmfr_tmp[n_rivers] <- -sum(b_dentmfr_tmp[1:(n_rivers - 1)]) 632 
  for(r in 1:n_rivers){ 633 
    b_dentmfr[r] <- b_dentmfr_p * b_dentmfr_tmp[r] 634 
  } 635 
 636 
  ## site within river random effect with half-normal variance 637 
  for(r in 1:n_rivers){ 638 
    mu_r_s[r] <- 0 639 
    sigma_r_s[r] ~ dnorm(0, 0.01);T(0, ) 640 
    for(s in (n_sites[r] + 1):max(n_sites)){ 641 
      u[r, s] <- 0 642 
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    } 643 
    for(s in 1:n_sites[r]){ 644 
      u[r, s] ~ dnorm(mu_r_s[r], sigma_r_s[r]) 645 
    } 646 
  } 647 
 648 
  ## year within river random effect with half-normal variance 649 
  for(r in 1:n_rivers){ 650 
    mu_r_y[r] <- 0 651 
    sigma_r_y[r] ~ dnorm(0, 0.01);T(0, ) 652 
    for(y in (n_years[r] + 1):max(n_years)){ 653 
      v[r, y] <- 0 654 
    } 655 
    for(y in 1:n_years[r]){ 656 
      v[r, y] ~ dnorm(mu_r_y[r], sigma_r_y[r]) 657 
    } 658 
  } 659 
 660 
  ## model error 661 
  tau ~ dgamma(0.001, 0.001) 662 
  sigma <- 1/sqrt(tau) 663 
 664 
  ## model fitting 665 
  for (i in 1:n_fishes) { 666 
 667 
    Length_mm[i] ~ dnorm(mu[i], tau) 668 
 669 
    mu[i] <- a + b_r[River[i]] + 670 
      b_precocious * Precocious[i] + b_precociousr[River[i]] * Precocious[i] + 671 
      b_doy * DoY[i] + 672 
      b_den * deltaDens[i] + b_denr[River[i]] * deltaDens[i] + 673 
      b_wdd * WntDegD[i] + b_wddq * WntDegD[i]^2 + b_wddr[River[i]] * WntDegD[i] + 674 

b_wddrq[River[i]] * WntDegD[i]^2 + 675 
      b_spt * SpgAvgT[i] + b_sptq * SpgAvgT[i]^2 + b_sptr[River[i]] * SpgAvgT[i] + 676 

b_sptrq[River[i]] * SpgAvgT[i]^2 + 677 
      b_smt * SmrMaxT[i] + b_smtq * SmrMaxT[i]^2 + b_smtr[River[i]] * SmrMaxT[i] + 678 

b_smtrq[River[i]] * SmrMaxT[i]^2 + 679 
      b_tmf * TotAvgF[i] + b_tmfr[River[i]] * TotAvgF[i] + 680 
      b_smf * SmrMinF[i] + b_smfr[River[i]] * SmrMinF[i] + 681 
      b_denspt * DensSpt[i] + b_densptr[River[i]] * DensSpt[i] + 682 
      b_dentmf * DensTmf[i] + b_dentmfr[River[i]] * DensTmf[i] + 683 
      u[River[i], Site[i]] + v[River[i], Year[i]] 684 
 685 
  } 686 
 687 
  ## model adequacy; Bayesian P value 688 
  for(i in 1:n_fishes){ 689 
    res[i] <- (Length_mm[i] - mu[i]) / sigma 690 
    p.res[i] <- phi(res[i]) 691 
    pred[i] ~ dnorm(mu[i], tau) 692 
    p.pred[i] <- step(Length_mm[i] - pred[i]) 693 
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    res.pred[i] <- (Length_mm[i] - pred[i]) / sigma 694 
  } 695 
  D.fit <- sum(res[]) 696 
  D.fit.pred <- sum(res.pred[]) 697 
 698 
} 699 

 700 
 701 


